
Probability Theory 2

6th Exercise Sheet: Concentration inequalities II 18.03.2025.

6.1 (a) Let us suppose that we have an unfair die. That is, it has a shape of a general
parallelepiped but the sum of the opposite sides are still 7. Let Xi be the outcome of
the ith roll (the rolls are independent), and let Sn = X1+ · · ·+Xn. Using Bernstein’s,
give estimates for
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)
.

(b) Give an estimate by using Hoeffding’s inequality!

6.2HW Draw 100 strings in a circle with radius 1 independently from each other in such a way that
the endpoints of the strings are chosen independently and uniformly on the unit circle.
Denote the total length of the strings by X. Using Bernstein’s inequality, give a lower
estimate for the probability

P
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π
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)
.

6.3 LetX be a random variable. The function Î(λ) = log(E(eλX)) is called logarithmic moment
generating function.
(a) Find the logarithmic moment generating function of aX + b.
(b) Let X1, X2 be independent random variables, find the LMGF of X1 +X2.
(c) Let X1, X2, . . . be i.i.d. random variables and let ν be N-valued random variable

independent of Xis. Let Y =
∑ν

n=1Xi. Express the logarithmic moment generating
function of Y by the LMGF of ν and X1.

6.4 Let us define the Legendre transform f̂ of a function f : R → R ∪ {∞} such that

f̂(x) = sup
λ∈R

{xλ− f(λ)}.

(a) Show that if f is affine linear then
ˆ̂
f = f .

(b) Show that if f is C2 and strictly convex then the derivative of the Legendre transform

of f equals to the inverse of the derivative of f and moreover,
ˆ̂
f = f .

6.5 Let us define the rate function of the random variable X by the Legendre transform of the
I(x) = supλ∈R{λx− Î(λ)}, where Î(λ) = log(E(eλX)) is the logarthmic moment generating

function of X. Suppose that Î(λ) exists for every λ ∈ R
(a) Using the strict convexity of Î show that I(x) = x · (Î ′)−1(x)− Î((Î ′)−1(x)).
(b) Show that I is C∞, I(E(X)) = 0 and I(x) > 0 for every x ̸= E(X).
(c) Find the logarithmic moment generating function of random variables with distribu-

tions Bernoulli, Binomial, Poisson, Exponential, Geometric, Normal (with the range)!
(d) Find the rate function of the random variables with distributions Bernoulli, Binomial,

Poisson, Exponential, Geometric and Normal (with the range)! (Hint: Use the learnt

formula that I(x) = x · (Î ′)−1(x)− Î((Î ′)−1(x)).)

6.6 (Large deviation for renewal processes) Let τ1, τ2, . . . , τn, . . . be i.i.d non-negative random
variables. Suppose that E(τi) =: m < ∞. Let Tn :=

∑n
i=1 τi and let

νt := max{n : Tn ≤ t}. Denote by I(x) the rate function of τ1 and denote by Î(λ)
the logarithmic moment generating function of τ1. For every y1 ≤ 1

m
≤ y2, using the rate

function I find bounds for

P
(νt
t
≤ y1

)
for t ≫ 0 and P

(νt
t
≥ y2

)
for t ≪ 0.



6.7 (a) Using Stirling’s Formula, show Cramér’s Theorem for the sum of independent indica-
tiors, i.e. show if Sn ∼ BIN(n, p) then

lim
n→∞

− 1

n
logP(Sn = ⌈nx⌉) = I(x) = x log

(
x

p

)
+ (1− x) log

(
1− x

1− p

)
.

(b) By using (a), show limn→∞− 1
n
logP(Sn

n
≥ x) = I(x) for x ≥ p.

(c) Show that I(x) is the Legendre transform of Î(λ) = log(1− p+ peλ).

6.8HW2 (a) Let X be a random variable with standard normal distribution N(0, 1). Prove that
for x > 0 (

1

x
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x3

)
e−x2/2

√
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x

e−x2/2

√
2π

(Hint: Compare the derivatives.)

(b) Using exercise 5.8a, show the special case of Cramér’s Theorem for i.i.d. N(0, 1)
random variables. That is, let X1, X2, · · · be i.i.d random variables such that Xi has
distribution N(0, 1). Show that

lim
n→∞

−1

n
logP

(
X1 + · · ·+Xn

n
∈ [a, b]

)
= inf

x∈[a,b]

x2

2
.

6.9 (The Bernstein inequality is asymptotically sharp) Let X1, X2, . . . be i.i.d random variables
with P(Xi = ±1) = 1

2
, and let Yn = X1+···+Xn√

n
.

(a) Give an upper bound for limn→∞ P(|Yn| ≥ λ) by using Bernstein’s inequality.
(b) Show that P(|Yn| ≥ λ) ≤ 2 exp(−nI( λ√

n
)), where

I(x) = −1 + x

2
log(1 + x)− 1− x

2
log(1− x)

is the rate function of the Bernoulli distribution of Xi.
(c) Using 5.9b, give an upper bound for limn→∞ P(|Yn| ≥ λ).
(d) Show by using De Moivre’s Central Limit Theorem and 5.8a that for every ε > 0

there exists λ0 such that for every λ ≥ λ0

lim
n→∞

P(|Yn| ≥ λ) ≥ 2e−(1+ε)λ
2

2 .


