## Probability Theory 2

6th Exercise Sheet: Concentration inequalities II 18.03.2025.

**6.1** (a) Let us suppose that we have an unfair die. That is, it has a shape of a general parallelepiped but the sum of the opposite sides are still 7. Let  $X_i$  be the outcome of the *i*th roll (the rolls are independent), and let  $S_n = X_1 + \cdots + X_n$ . Using Bernstein's, give estimates for  $\mathbb{P}\left(\left|S_n - n\frac{7}{2}\right| > n\right)$ .

(b) Give an estimate by using Hoeffding's inequality!

**HW** 6.2 Draw 100 strings in a circle with radius 1 independently from each other in such a way that the endpoints of the strings are chosen independently and uniformly on the unit circle. Denote the total length of the strings by X. Using Bernstein's inequality, give a lower estimate for the probability

 $\mathbb{P}\left(\left|X - \frac{400}{\pi}\right| < 10 \frac{\sqrt{8\pi^2 - 64}}{\pi}\right).$ 

- **6.3** Let X be a random variable. The function  $\widehat{I}(\lambda) = \log(\mathbb{E}(e^{\lambda X}))$  is called logarithmic moment generating function.
  - (a) Find the logarithmic moment generating function of aX + b.
  - (b) Let  $X_1, X_2$  be independent random variables, find the LMGF of  $X_1 + X_2$ .
  - (c) Let  $X_1, X_2, \ldots$  be i.i.d. random variables and let  $\nu$  be N-valued random variable independent of  $X_i$ s. Let  $Y = \sum_{n=1}^{\nu} X_i$ . Express the logarithmic moment generating function of Y by the LMGF of  $\nu$  and  $X_1$ .
- **6.4** Let us define the Legendre transform  $\hat{f}$  of a function  $f: \mathbb{R} \to \mathbb{R} \cup \{\infty\}$  such that

$$\hat{f}(x) = \sup_{\lambda \in \mathbb{R}} \{x\lambda - f(\lambda)\}.$$

- (a) Show that if f is affine linear then  $\hat{f} = f$ .
- (b) Show that if  $\hat{f}$  is  $C^2$  and strictly convex then the derivative of the Legendre transform of f equals to the inverse of the derivative of f and moreover,  $\hat{f} = f$ .
- **6.5** Let us define the rate function of the random variable X by the Legendre transform of the  $I(x) = \sup_{\lambda \in \mathbb{R}} \{\lambda x \widehat{I}(\lambda)\}$ , where  $\widehat{I}(\lambda) = \log(\mathbb{E}(e^{\lambda X}))$  is the logarthmic moment generating function of X. Suppose that  $\widehat{I}(\lambda)$  exists for every  $\lambda \in \mathbb{R}$ 
  - (a) Using the strict convexity of  $\widehat{I}$  show that  $I(x) = x \cdot (\widehat{I}')^{-1}(x) \widehat{I}((\widehat{I}')^{-1}(x))$ .
  - (b) Show that I is  $C^{\infty}$ ,  $I(\mathbb{E}(X)) = 0$  and I(x) > 0 for every  $x \neq \mathbb{E}(X)$ .
  - (c) Find the logarithmic moment generating function of random variables with distributions Bernoulli, Binomial, Poisson, Exponential, Geometric, Normal (with the range)!
  - (d) Find the rate function of the random variables with distributions Bernoulli, Binomial, Poisson, Exponential, Geometric and Normal (with the range)! (Hint: Use the learnt formula that  $I(x) = x \cdot (\widehat{I}')^{-1}(x) \widehat{I}((\widehat{I}')^{-1}(x))$ .)
- **6.6** (Large deviation for renewal processes) Let  $\tau_1, \tau_2, \ldots, \tau_n, \ldots$  be i.i.d non-negative random variables. Suppose that  $\mathbb{E}(\tau_i) =: m < \infty$ . Let  $T_n := \sum_{i=1}^n \tau_i$  and let  $\nu_t := \max\{n : T_n \le t\}$ . Denote by I(x) the rate function of  $\tau_1$  and denote by  $\widehat{I}(\lambda)$  the logarithmic moment generating function of  $\tau_1$ . For every  $y_1 \le \frac{1}{m} \le y_2$ , using the rate function I find bounds for

$$\mathbb{P}\left(\frac{\nu_t}{t} \leq y_1\right) \text{ for } t \gg 0 \text{ and } \mathbb{P}\left(\frac{\nu_t}{t} \geq y_2\right) \text{ for } t \ll 0.$$

(a) Using Stirling's Formula, show Cramér's Theorem for the sum of independent indicatiors, i.e. show if  $S_n \sim BIN(n, p)$  then

$$\lim_{n \to \infty} -\frac{1}{n} \log \mathbb{P}(S_n = \lceil nx \rceil) = I(x) = x \log \left(\frac{x}{p}\right) + (1-x) \log \left(\frac{1-x}{1-p}\right).$$

- (b) By using (a), show  $\lim_{n\to\infty} -\frac{1}{n} \log \mathbb{P}(\frac{S_n}{n} \ge x) = I(x)$  for  $x \ge p$ .
- (c) Show that I(x) is the Legendre transform of  $\hat{I}(\lambda) = \log(1 p + pe^{\lambda})$ .
- $\mathbf{HW}_2$  6.8 (a) Let X be a random variable with standard normal distribution N(0,1). Prove that for x > 0 $\left(\frac{1}{x} - \frac{1}{x^3}\right) \frac{e^{-x^2/2}}{\sqrt{2\pi}} \le \mathbb{P}(X \ge x) \le \frac{1}{x} \frac{e^{-x^2/2}}{\sqrt{2\pi}}$

(Hint: Compare the derivatives.)

(b) Using exercise **5.8a**, show the special case of Cramér's Theorem for i.i.d. N(0,1)random variables. That is, let  $X_1, X_2, \cdots$  be i.i.d random variables such that  $X_i$  has distribution N(0,1). Show that

$$\lim_{n \to \infty} \frac{-1}{n} \log \mathbb{P}\left(\frac{X_1 + \dots + X_n}{n} \in [a, b]\right) = \inf_{x \in [a, b]} \frac{x^2}{2}.$$

- **6.9** (The Bernstein inequality is asymptotically sharp) Let  $X_1, X_2, \ldots$  be i.i.d random variables with  $\mathbb{P}(X_i = \pm 1) = \frac{1}{2}$ , and let  $Y_n = \frac{X_1 + \dots + X_n}{\sqrt{n}}$ .
  - (a) Give an upper bound for  $\lim_{n\to\infty} \mathbb{P}(|Y_n| \geq \lambda)$  by using Bernstein's inequality. (b) Show that  $\mathbb{P}(|Y_n| \geq \lambda) \leq 2 \exp(-nI(\frac{\lambda}{\sqrt{n}}))$ , where

$$I(x) = -\frac{1+x}{2}\log(1+x) - \frac{1-x}{2}\log(1-x)$$

is the rate function of the Bernoulli distribution of  $X_i$ .

- (c) Using **5.9b**, give an upper bound for  $\lim_{n\to\infty} \mathbb{P}(|Y_n| \geq \lambda)$ .
- (d) Show by using De Moivre's Central Limit Theorem and **5.8a** that for every  $\varepsilon > 0$ there exists  $\lambda_0$  such that for every  $\lambda \geq \lambda_0$

$$\lim_{n \to \infty} \mathbb{P}(|Y_n| \ge \lambda) \ge 2e^{-(1+\varepsilon)\frac{\lambda^2}{2}}.$$