Probability Theory 2

8th Exercise Sheet: Types of convergences

01.04.2025.

- **8.1** Let $X_1, X_2, \ldots, X_n, \ldots, Y_1, Y_2, \ldots, Y_n, \ldots, X$ and Y be random variables on the same probspace $(\Omega, \mathcal{A}, \mathbb{P})$ and suppose that $X_n \stackrel{\mathbb{P}}{\longrightarrow} X$ and $Y_n \stackrel{\mathbb{P}}{\longrightarrow} Y$. Show
 - (a) $aX_n \xrightarrow{\mathbb{P}} aX \ (a \in \mathbb{R}),$
 - (b) $X_n \pm Y_n \stackrel{\mathbb{P}}{\longrightarrow} X \pm Y$,
 - (c) $X_n Y_n \stackrel{\mathbb{P}}{\longrightarrow} XY$,
 - (d) If $\mathbb{P}(Y_n \neq 0) = \mathbb{P}(Y \neq 0) = 1$ then $X_n/Y_n \xrightarrow{\mathbb{P}} X/Y$.
 - (e) If $f: \mathbb{R} \to \mathbb{R}$ is continuous then $f(X_n) \xrightarrow{\mathbb{P}} f(X)$.
- **8.2** Let X_1, X_2, \ldots and Y be random variables on the same prob. space $(\Omega, \mathcal{A}, \mathbb{P})$ and let $F_1(x)$, $F_2(x), \ldots$ and G(x) be their distribution functions respectively. Show that if $X_n \stackrel{\mathbb{P}}{\longrightarrow} Y$ then $\lim_{n\to\infty} F_n(x) = G(x)$ at every continuity point x of G.
- HW 8.3 Show that the convergence in probability is metrisable with respect to

$$\rho(X,Y) := \inf\{\varepsilon : \mathbb{P}(|X - Y| > \varepsilon) < \varepsilon\}.$$

That is, show that ρ is a metric and $X_n \stackrel{\mathbb{P}}{\longrightarrow} Y$ if and only if $\rho(X_n, Y) \to 0$. (Remark: This metric is complete.)

8.4 Let H be a subset of L^1 random variables on the probability space $(\Omega, \mathcal{F}, \mathbb{P})$. We say that the set H is uniformly integrable if

$$\lim_{M \to \infty} \sup_{X \in H} \mathbb{E}\Big(|X| \mathbb{1}_{\{|X| > M\}}\Big) = 0.$$

- (a) Show that every finite subset of $L^1(\Omega, \mathbb{P})$ is uniformly integrable.
- (b) If $Y \in L^1$ then the set $\{X \in L^1(\Omega) : |X| < |Y|\}$ is uniformly integrable.
- (c) If H is uniformly integrable then $\{X \in L^1(\Omega) : \exists Y \in H |X| \leq |Y|\}$ is unif. integrable.
- HW^* 8.5 Show that a set H of random variables is uniformly integrable if and only if the followings hold:
 - $(1) \sup_{X \in H} \mathbb{E} |X| < \infty$
 - (2) For every $\varepsilon > 0$ there exists $\delta > 0$ such that $\mathbb{E}(|X| \mathbb{1}_A) \leq \varepsilon$ for every $\mathbb{P}(A) \leq \delta$ and every $X \in H$.
 - **8.6** Let $f:[0,1] \mapsto \mathbb{R}$ be bounded, three times continuously differentiable function. Find the value of the next limit.

$$\lim_{n \to \infty} n \int_0^1 \cdots \int_0^1 \left(f\left(\frac{x_1 + \cdots + x_n}{n}\right) - f\left(\frac{1}{2}\right) \right) dx_1 \cdots dx_n$$

Hint: Approximate with Taylor polynomials.

- **8.7** Show that if $X_n \xrightarrow{L^1} X$ then $\mathbb{E}(X_n) \to \mathbb{E}(X)$. Furthermore, if $\mathbb{E}(X_n) \to \mathbb{E}(X)$ and $\mathbb{P}(X_n \leq X) = 1$ for every n then $X_n \xrightarrow{L^1} X$.
- **8.8** Find the value of the next limit.

$$\lim_{n \to \infty} \int_0^1 \int_0^1 \cdots \int_0^1 \frac{x_1^2 + x_2^2 + \cdots + x_n^2}{x_1 + x_2 + \cdots + x_n} dx_1 dx_2 \cdots dx_n$$

8.9 Let $f:[0,1]\to\mathbb{R}$ be continuous. Show that

(a)
$$\lim_{n \to \infty} \int_0^1 \int_0^1 \cdots \int_0^1 f\left(\frac{x_1 + x_2 + \cdots + x_n}{n}\right) dx_1 dx_2 \cdots dx_n = f\left(\frac{1}{2}\right),$$

(b)
$$\lim_{n \to \infty} \int_0^1 \int_0^1 \cdots \int_0^1 f((x_1 x_2 \cdots x_n)^{1/n}) dx_1 dx_2 \cdots dx_n = f(\frac{1}{e}).$$

- **8.10** Let $X_1, X_2, \ldots, X_n, \ldots$ be random variables on the probability space $(\Omega, \mathcal{A}, \mathbb{P})$ and let $Y_n := \sup_{m \ge n} |X_m|$. Show that the following statements are equivalent:

 - (i) $X_n \xrightarrow{\mathbf{a.s.}} 0$, as $n \to \infty$. (ii) $Y_n \xrightarrow{\mathbb{P}} 0$ as $n \to \infty$.
- 8.11 Dominated convergence theorem Let X_n be a sequence of random variables such that $X_n \xrightarrow{\text{a.s.}} X$ and there exists a random variable Y such that $\mathbb{E}(|Y|) < \infty$ and $\mathbb{P}(|X_n| \leq |Y|) = 1$ for every n. Then $\mathbb{E}(X_n) \to \mathbb{E}(X)$ as $n \to \infty$.
- **HW** 8.12 Scheffé's Theorem Let X_n be a sequence of non-negative random variables and let X be a random variable such that $X_n \xrightarrow{\text{a.s.}} X$ and $\mathbb{E}(X_n) \to \mathbb{E}(X) < \infty$ as $n \to \infty$. Prove that $X_n \xrightarrow{L^1} X$.

(Hint: Use that $|Y| = Y + 2 \max\{0, -Y\}$ and the dominated convergence theorem)