Probability Theory 2

9th Exercise Sheet: Borel-Cantelli lemmas & Kolmogorov's SLLN 08.04.2025.

9.1 Let X_1, X_2, \ldots be independent random variables such that

$$\mathbb{P}(X_n = n^2 - 1) = n^{-2}, \quad \mathbb{P}(X_n = -1) = 1 - n^{-2}.$$

Prove that for every $n \in \mathbb{N}$, $\mathbb{E}(X_n) = 0$ but

$$\lim_{n \to \infty} \frac{X_1 + X_2 + \dots + X_n}{n} = -1 \quad \text{almost surely.}$$

- **9.2** Let X_n be i.i.d random variables with $X_n \sim GEO(p)$. That is $\mathbb{P}(X_n = k) = (1-p)p^k$ for $k \geq 0$. Show that $\limsup_{n \to \infty} \frac{X_n}{\log n} = |\log p|^{-1}$ almost surely.
- **9.3** We make infinitely many independent experiments. The probability that the nth experiment is successful is $n^{-\alpha}$, where $0 < \alpha < 1$. Let $k \ge 1$. It makes us happy if it happens infinitely often that we have k consecutive successful experiments. What is the probability that we are happy?
- **9.4** Let X_1, X_2, \ldots be independent random variables such that $\mathbb{P}(X_n = 1) = p_n$ and $\mathbb{P}(X_n=0)=1-p_n$. Which properties does $p_n, n=1,2,\ldots$ have if (a) $X_n \xrightarrow{\mathbb{P}} 0$ as $n \to \infty$ (b) $X_n \xrightarrow{\text{a.s.}} 0$ as $n \to \infty$.
- **9.5** Let $X_i \sim EXP(\lambda_i)$ be i.i.d. random variables. Give necessary and sufficient conditions for the following: (a) $X_n \xrightarrow{\mathbb{P}} 0$, (b) $X_n \xrightarrow{\mathbf{a.s.}} 0$, (c) $X_n \xrightarrow{L^1} 0$.
- **9.6** Let X_1, X_2, \ldots be independent random variables. Prove that $\sup X_n < \infty$ with probability HW1 if and only if $\sum_{n=1}^{\infty} \mathbb{P}(X_n > A) < \infty$ for some positive real number A.
 - **9.7** Let $X_1, X_2, \ldots, X_n, \ldots$ be i.i.d non-negative random variables, which are not degenerated. (That is, $1 = \mathbb{P}(X_i \ge 0) \ge \mathbb{P}(X_i > 0) > 0$.) Show that the series $\sum_{i=1}^{\infty} \mathbb{P}\left(\sum_{i=1}^{n} X_i < x\right) < \infty$ is convergent.
 - **9.8** Let $X_1, X_2, \ldots, X_n, \ldots$ be i.i.d random variables. Show that the following statements are equivalent:
 - (i) $\mathbb{E}|X_i| < \infty$.
 - (ii) $\mathbb{P}(|X_n| > n \text{ for infinitely many } n) = 0.$
 - **9.9** Prove that for any sequence of random variables X_1, X_2, \ldots there exists a sequence of real numbers c_1, c_2, \ldots such that $\frac{X_n}{C_n} \xrightarrow{\mathbf{a.s.}} 0.$
 - **9.10** Let $f:[0,1]\to\mathbb{R}$ be a continuous integrable (i.e. $\int_0^1|f(x)|\,dx<\infty$) function. Let X_1,X_2,\ldots be i.i.d. random variables with distribution UNI(0,1). Show that

$$\mathbb{P}\left(\lim_{n\to\infty}\frac{f(X_1)+\cdots+f(X_n)}{n}=\int_0^1f(x)\,dx\right)=1.$$

HW 9.11 Simplest form of McMillan's Theorem. Let $\mathbf{p}=(p_1,p_2,\ldots,p_r)$ be such that $p_i,\ i=1,\ldots,p_r$ $1, 2, \ldots, r$ are positive reals and $p_1 + p_2 + \cdots + p_r = 1$. That is, **p** is a probability distribution on $\{1,2,\ldots,r\}$. We call the quantity $H(\mathbf{p}):=-\sum_{j=1}^r p_j \log p_j$ the entropy of \mathbf{p} . Let X_1, X_2, \ldots be i.i.d random variables such that $\mathbb{P}(X_n = j) = p_j$ for $j \in \{1, \ldots, r\}$. Let $R_n := \prod_{k=1}^n p_{X_k}$. The random variable R_n is the a priori probability of the sequence X_1, X_2, \ldots, X_n . Show that

$$\mathbb{P}\left(\lim_{n\to\infty}\frac{1}{n}\log R_n = -H(\mathbf{p})\right) = 1.$$

9.12 (Longest sequence of heads I.) Let X_1, X_2, \ldots be i.i.d. random variables with distribution $\mathbb{P}(X_k = 1) = p$, $\mathbb{P}(X_k = 0) = q$, where p + q = 1. Let us fix a parameter $\lambda > 1$ and denote $A_k^{(\lambda)}$ for $k=0,1,2,\ldots$ the following event

$$A_k^{(\lambda)} := \left\{ \exists r \in \left[[\lambda^k], [\lambda^{k+1}] - k \right] \cap \mathbb{N} : X_r = X_{r+1} = \dots = X_{r+k-1} = 1 \right\}.$$

In particular, the event $A_k^{(\lambda)}$ means that between $[\lambda^k]$ and $[\lambda^{k+1}]-1$ there exists somewhere a sequence containing only 1 and with length k Show that (a) If $\lambda < p^{-1}$ then $A_k^{(\lambda)}$ happen for at most finitely many k with probability 1.

- (b) If $\lambda \geq p^{-1}$ then with probability 1, the events $A_k^{(\lambda)}$ happen for infinitely many k. Hint: Use the Borel-Cantelli lemmas.
- HW 9.13 (Longest sequence of heads II.) Let

$$R_n := \sup\{k \ge 0 : X_n = X_{n+1} = \dots = X_{n+k-1} = 1\}.$$

That is, R_n denotes the length of sequence of 1s beginning at n. (If $X_n = 0$ then $R_n = 0$.) Show that $\mathbb{P}\left(\limsup_{n\to\infty}\frac{R_n}{\log n}=|\log p|^{-1}\right)=1.$

Hint: For every fixed parameter value of $\alpha > 0$, let

$$B_n^{(\alpha)} := \{ R_n > \alpha \log n / |\log p| \}.$$

Show that if $\alpha > 1$ then with probability 1 only finitely many events $B_n^{(\alpha)}$. If $\alpha \leq 1$ then show that $B_n^{(\alpha)}$ happen for infinitely many n with probability 1.

- HW* 9.14 (Reverse of the Law of Large Numbers.)
 - (a) Let Z be a non-negative random variable and let

$$Y := [Z] = \sum_{n=1}^{\infty} \mathbb{1}_{\{Z \ge n\}}.$$

Show that

$$\sum_{n=1}^{\infty} \mathbb{P}\left(Z \ge n\right) \le \mathbb{E}\left(Z\right) \le 1 + \sum_{n=1}^{\infty} \mathbb{P}\left(Z \ge n\right).$$

(b) Let X_1, X_2, \ldots be i.i.d. random variables such that $\mathbb{E}(|X_n|) = \infty$. Prove that for every $M < \infty$

$$\sum_{n=1}^{\infty} \mathbb{P}\Big(\left|X_n\right| \geq Mn\Big) = \infty \text{ and hence, } \mathbb{P}\left(\limsup_{n \to \infty} \frac{\left|X_n\right|}{n} = \infty\right) = 1.$$

(c) Let $S_n := X_1 + X_2 + \cdots + X_n$, where X_1, X_2, \ldots are random variables from (b). Show that

$$\mathbb{P}\left(\limsup_{n\to\infty}\frac{|S_n|}{n}=\infty\right)=1.$$