Probability Theory 2

10th Exercise Sheet: Kolmogorov's 0-1 Law

15.04.2025.

- 10.1 Show an example for a sequence of independent non-negative random variables X_1, X_2, \ldots such that the sum of the variances is divergent (that is $\sum_{i=1}^{\infty} \mathbb{D}^2(X_i) = \infty$) but the sequence $S_n = X_1 + \cdots + X_n$ converges almost surely to a finite random variable.
- 10.2 Let X_1, X_2, \ldots be uncorrelated random variables on the same probability space $(\Omega, \mathcal{A}, \mathbb{P})$ and expected value 0 respectively. Show that if the sum of the variances is finite then the sequence $S_n = X_1 + \cdots + X_n$ is convergent in L^2 .
- **10.3** Let X_1, X_2, \ldots be independent random variables such that $X_n \sim EXP(\lambda_n)$ and let $S_n := \sum_{i=1}^n X_i$. Prove that if $\sum_{n=1}^\infty \frac{1}{\lambda_n} = \infty$ then $S_n \xrightarrow{\mathbf{a.s.}} \infty$, but if $\sum_{n=1}^\infty \frac{1}{\lambda_n} < \infty$ then $S_n \xrightarrow{\mathbf{a.s.}} S$, where S is a random variable with $\mathbb{P}(S < \infty) = 1$.
- **HW** 10.4 Let θ_n be a sequence and let X_1, X_2, \ldots be a sequence of independent random variables such that $X_n \sim UNI[0, \theta_n]$. Show that the series $S_n = X_1 + \cdots + X_n$ converges almost surely to a finite random variable if and only if $\sum_{n=1}^{\infty} \theta_n < \infty$.
 - 10.5 Let X_1, X_2, \ldots be independent random variables and let b_n be a sequence such that

 - (a) Prove that $\mathbb{P}\left(\lim_{n\to\infty}\frac{1}{b_n}\sum_{i=1}^n X_i \text{ exists}\right)$ is either 0 or 1. (b) Suppose that $\frac{1}{b_n}\sum_{i=1}^n X_i \xrightarrow{\mathbf{a.s.}} Z$ for some random variable Z. Show that Z is constant almost surely.
 - 10.6 Let X_0, X_1, X_2, \ldots be a sequence of independent random variables. Show that the radius of convergence of the random Taylor series $\sum_{k=0}^{\infty} X_k z^k$ is r with probability 1 for some non-random $r \in \mathbb{R}_+ \cup \{0, \infty\}$.
- \mathbf{HW}^* 10.7Suppose that X_0, X_1, \ldots are i.i.d. Show that the radius of convergence of the random Taylor series $\sum_{k=0}^{\infty} X_k z^k$ is 1 if $\mathbb{E}(\log^+|X_i|) < \infty$ and 0 if $\mathbb{E}(\log^+|X_i|) = \infty$ with probability 1, where $\log^+(x) = \max\{0, \log(x)\}.$
 - 10.8 (Not-iterated logarithm) Let X be a random variable with standard normal distribution

$$N(0,1)$$
. We have shown earlier that for any $x>0$
$$\left(\frac{1}{x}-\frac{1}{x^3}\right)\frac{\exp(-x^2/2)}{\sqrt{2\pi}}\leq \mathbb{P}\Big(X>x\Big)\leq \frac{1}{x}\frac{\exp(-x^2/2)}{\sqrt{2\pi}}.$$

(a) Let X_1, X_2, \ldots be i.i.d with $X_i \sim N(0, 1)$. Show that

$$\mathbb{P}\Big(\limsup_{n\to\infty}\frac{X_n}{\sqrt{2\log n}}=1\Big)=1.$$

(b) Let $S_n := X_1 + X_2 + \cdots + X_n$, where X_1, X_2, \ldots are from (a). Show that for every $C > \sqrt{2}$ $\mathbb{P}\Big(\limsup_{n \to \infty} \frac{S_n}{\sqrt{n \log n}} < C\Big) = 1.$

(Note: The Iterated logarithms Thm claims that $\mathbb{P}\left(\limsup_{n\to\infty}\frac{S_n}{\sqrt{2n\log\log n}}=1\right)=1.$)

- \mathbf{HW}_2 10.9 Let X_1, X_2, \dots be i.i.d. random variables with distribution $POI(\mu)$.
 - (a) Let $Y_i = \mu X_i$. Find the rate function I(x) of Y_1 !
 - (b) Show that for every $x \ge 0$, $I(x) \ge x^2/(2\mu)!$
 - (c) Let $S_n = X_1 + \cdots + X_n$. Show that

$$\mathbb{P}\left(\liminf_{n\to\infty} \frac{S_n - n\mu}{\sqrt{2\mu n \log n}} \ge -1\right) = 1$$