Probability Theory 2

11th Exercise Sheet: Characteristic functions I 29.04.2025.

- 11.1 (a) Show that $\varphi_{aX+b}(t) = e^{itb}\varphi_X(at)$.
 - (b) Show if X, Y are independent the characteristic function ϕ_{X+Y} of X+Y is the product of the characteristic functions ϕ_X, ϕ_Y .
 - (c) Show an example that $\phi_{X+Y} = \phi_X \phi_Y$ but X and Y are not independent.
- 11.2 Find the characteristic functions of the following distributions: BIN(n, p), GEO(p), $POI(\lambda)$, $EXP(\lambda)$, $N(\mu, \sigma^2)$, CAU(a, b) and UNI(a, b).
- (a) Let ϕ be a characteristic function. Show that $\overline{\phi}, \phi^2, |\phi|^2$ are characteristic functions 11.3 too.
 - (b) Let ϕ_1, \ldots, ϕ_n be characteristic functions. Show that $\sum_{i=1}^n q_i \phi_i$ is a characteristic function for any $q_1, \ldots, q_n \geq 0$ with $\sum_{i=1}^n q_i = 1$. In fact, show that $\text{Re}(\phi)$ is a characteristic function too.
 - (c) Show an example that $|\phi|$ is not a characteristic function.
- 11.4 Are the following functions characteristic function for some random variable?

(a)
$$\frac{1}{1+t^2}$$
, (b) e^{-t^4} , (c) $\sin t$, (d) $\cos t$, (e) $\frac{1+\cos t}{2}$.

- 11.5 Let f(x) = 1 |x| for $|x| \le 1$, and f(x) = 0 for |x| > 1. Find the characteristic function of random variables with density f.
- HW₂ 11.6 Find the characteristic functions of the random variables with densities:

(a)
$$\frac{a}{2}e^{-a|x|}, x \in \mathbb{R};$$
 (b) $\frac{|x|}{2}e^{-|x|}, x \in \mathbb{R}.$

- **HW** 11.7 Let $\varphi(t)$ be a characteristic function.

 - (a) Show that $\psi(t) := 1/(2-\varphi(t))$ is a characteristic function too. (b) Show that $\int_0^\infty \varphi(tu) e^{-u} du$ is a characteristic function as well.
- **HW** 11.8 Show that a random variable X has symmetric distribution if and only if the characteristic function of X is real. (We call the distribution function F symmetric, if for every $x \in \mathbb{R}$, F(-x) = 1 - F(x).
 - 11.9 Show an example of a random variable X such that φ_X is countinuously differentiable but $\mathbb{E}(|X|) = \infty$.
 - 11.10 Let X be a random variable and let ϕ_X the characteristic function of X. Suppose that there exists a $t_0 \in \mathbb{R}$ such that $t_0 \neq 0$ and $|\phi_X(t_0)| = 1$. Show that X has lattice distribution. That is, there exists an arithmetic sequence $p_n = an + b$ with some $a \neq a$ $0, b \in \mathbb{R}$ such that $\mathbb{P}(X \in \{p_n\}_{n \in \mathbb{Z}}) = 1$.
 - **11.11** Show that the difference of two i.i.d random variable cannot have distribution UNI(-1,1).
- **HW*11.12** Prove the identity

$$\frac{\sin t}{t} = \prod_{k=1}^{\infty} \cos \left(\frac{t}{2^k}\right)$$

by using characteristic functions.