Probability Theory 2

13th Exercise Sheet: Weak convergence

13.05.2025.

- 13.1 Let S = [0,1] and let μ_n be the discrete measure such that every point k/n has weight 1/(n+1) for $k=0,1,\ldots,n$. Show that $\mu_n \Rightarrow \mu$, where μ is the Lebesgue measure on S.
- **HW 13.2** Let X_n be a random variable with distribution $GEO(\frac{\lambda}{n})$ $\mathbb{P}(X_n = k) = (\lambda/n)(1 - \lambda/n)^k, \ k \geq 0.$). Using the definition of the weak convergence, show that $\frac{X_n}{n}$ has limiting distribution and find it.
 - 13.3 (Cramer-Slutsky theorem) Let $X_n, Y_n, Z_n, n \in \mathbb{N}$ and X be random variables over the same probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Show if $X_n \stackrel{d}{\longrightarrow} X$ and $Y_n \stackrel{\mathbb{P}}{\longrightarrow} y$, $Z_n \stackrel{\mathbb{P}}{\longrightarrow} z$ for some $y, z \in \mathbb{R}$ then $X_n Y_n + Z_n \xrightarrow{d} X \cdot y + z$.
- **HW** 13.4 Let $F_n, F: \mathbb{R} \to [0,1]$ be cumulative distribution functions. Assume that $F_n \Rightarrow F$ and Fis continuous. Show that for any convergent sequence $x_n \to x$ of real numbers we have $F_n(x_n) \to F(x)$.

Limit theorems for maximum of i.i.d random variables.

Let X_1, X_2, \ldots be i.i.d random variables with distribution function $F(x) := \mathbb{P}(X_i < x)$. Let $M_n := \max\{X_1, X_2, \dots, X_n\}$. The asymptotic behavior of the random variable M_n as $n \to \infty$ depends on then asymptotic of the upper tail of F(x). Show the following limit theorems (next 3 exercises):

13.5 Suppose that F(x) < 1 for every $x < \infty$ and $\lim_{x \to \infty} x^{\alpha} (1 - F(x)) = b$ for some $\alpha, b \in$ $(0,\infty)$ Show that the distribution of $n^{-1/\alpha}M_n$ converges weakly to:

$$\mathbb{P}\left(n^{-1/\alpha}M_n < x\right) \to \mathbb{1}_{\{x>0\}} \exp\left(-bx^{-\alpha}\right).$$

- \mathbf{HW}_2 13.6 Suppose that $F(x_0) = 1$ and F(x) < 1 for every $x < x_0$, moreover, $\lim_{x \to x_0} (x_0 x)^{-\alpha} (1 x)^{-\alpha}$ F(x) = b for some $\alpha, b \in (0, \infty)$ Then the distribution of $n^{1/\alpha}(x_0 - M_n)$ converges weakly to: $\mathbb{P}\left(n^{1/\alpha} (x_0 - M_n) < x\right) \to \mathbb{1}_{\{x>0\}} (1 - \exp(-bx^{\alpha})).$
 - **13.7** Suppose that F(x) < 1 for every $x < \infty$ and $\lim_{x \to \infty} e^{\lambda x} (1 F(x)) = b$ for some $\lambda, b \in (0, \infty)$ Then the distribution of $M_n - \lambda^{-1} \log n$ converges weakly to:

$$\mathbb{P}\left(M_n - \lambda^{-1} \log n < x\right) \to \exp\left(-be^{-\lambda x}\right).$$

13.8 Let X_1, X_2, \ldots be i.i.d. random variables with standard normal distribution. From previous exercise **6.8** we know that

$$\mathbb{P}(X_i > x) \sim \frac{1}{x} e^{-x^2/2} \text{ as } x \to \infty.$$

(i) Show that for any real number θ

$$\frac{\mathbb{P}(X_i > x + \theta/x)}{\mathbb{P}(X_i > x)} \to e^{-\theta} \text{ as } x \to \infty.$$

(ii) Define b_n such that $\mathbb{P}(X_i > b_n) = 1/n$. Show that

$$\mathbb{P}(b_n(M_n - b_n) \le x) \to e^{-e^{-x}} \text{ as } n \to \infty,$$

where $M_n = \max_{1 \le m \le n} X_m$. (iii) Show that $b_n \sim (2 \log n)^{1/2}$ and conclude that $M_n/(2 \log n)^{1/2} \stackrel{\mathbb{P}}{\longrightarrow} 1$.