
Probability Theory 2

I. Midterm test solutions

MT.1 Let use denote for k = 1, 2, . . . , N

ξk = 11 [the kth man survived] .

Then the total men who survived is

SN =
N∑
k=1

ξk.

Moreover

P (ξk = 1) = P (the kth man survived) =

(
2N−1
N−1

)(
2N
N

) =
1

2
.

Thus

E (ξk) =
1

2
and D2 (ξk) =

1

4
.

Moreover for any k ̸= l

E (ξkξl) = P (the kth and lth man survived) =

(
2N−2
N−2

)(
2N
N

) =
N − 1

4N − 2
<

1

4
.

Thus

Cov (ξk, ξl) = E (ξkξl)− E (ξk)E (ξl) <
1

4
− 1

2
· 1
2
< 0.

Then

E (SN) =
N

2
and D2 (SN) =

N

4
+ 2

N∑
k=2

k−1∑
l=1

Cov (ξk, ξl)︸ ︷︷ ︸
<0

<
N

4
.

Then for any δ > 0 using Chebyshev’s inequality

P
(∣∣∣∣XN − 1

2

∣∣∣∣ > δ

)
= P

(∣∣∣∣SN − N

2

∣∣∣∣ > δN

)
= P (|SN − E (SN)| > δN)

≤ D2 (SN)

δ2N2
<

N
4

δ2N2
=

1

4δ2
· 1

N
→ 0 as N → ∞.

Which exactly means

XN
P→ 1

2
as N → ∞.

MT.2 (a) Let ξ
(1)
n,k be i.i.d. with distribution p1 and ξ

(2)
n,k be i.i.d. with distribution p2. Let

Zn denote the size of the nth generation. Then Z0 = 1 by definition. Let Pn(x)
denote the PGF of Zn. Then clearly

P0(x) = x.

Now consider two cases



(i) If n is odd

Zn =

Zn−1∑
k=1

ξ
(1)
n−1,k,

thus
Pn(x) = Pn−1 (G1(x)) .

(ii) If n is even

Zn =

Zn−1∑
k=1

ξ
(2)
n−1,k,

thus
Pn(x) = Pn−1 (G2(x)) .

Then clearly we have

Pn(x) =


(G2 ◦G1) ◦ · · · ◦ (G2 ◦G1)︸ ︷︷ ︸

k

(x) if n = 2k

G1 ◦ (G2 ◦G1) ◦ · · · ◦ (G2 ◦G1)︸ ︷︷ ︸
k

(x) if n = 2k + 1

(b) In this case we know that

G1(x) =
1
3

1− 2
3
s
=

1

3− 2s

and

G2(x) =
3
4

1− 1
4
s
=

3

4− s
.

Then

G2 ◦G1(x) =
3

4− 2 1
3−2x

=
9− 6x

11− 8x
.

Moreover we know that

P (the amoebaes eventually die out) = lim
n→∞

Pn(0).

First let us calculate the limit
lim
n→∞

P2n(0).

This is exactly the smallest fixed point of G2 ◦G1(x). Solving the equation

9− 6x

11− 8x
= x

the solutions are

x1 = 1 and x2 =
9

8
.

Thus
lim
n→∞

P2n(0) = 1.

Moreover

lim
n→∞

P2n+1(0) = lim
n→∞

G1 (P2n(0)) = G1

(
lim
n→∞

P2n(0)
)
= G1(1) = 1.



Thus
lim
n→∞

Pn(0) = 1,

which exaclty means

P (the amoebaes eventually die out) = 1.

MT.3 Since n is not a prime number there exist two positive integers a, b ≥ 2 such that

n = ab.

Let us define

Y =

⌊
X

a

⌋
and Z = X mod a.

Then clearly

Y ∈ {0, 1, . . . , b− 1} and Z ∈ {0, 1, . . . , a− 1}

plus just by the definition of Y and Z

X = Y + Z.

Now we need to show that Y and Z are independent. Notice that for k ∈ {0, 1, . . . , b− 1}

P (Y = k) = P
(⌊

X

a

⌋
= k

)
= P (ak ≤ X < a(k + 1))

=

a(k+1)−1∑
m=ak

P (X = m) =
a(k + 1)− 1− ak + 1

n
=

a

n
=

1

b
.

Moreover for any l ∈ {0, 1, . . . , a− 1}

P (Z = l) = P (X mod a = l) =
b−1∑
m=0

P (X = ma+ l) =
b− 1 + 1

n
=

b

n
=

1

a
.

Then for any k ∈ {0, 1, . . . , b− 1} and l ∈ {0, 1, . . . , a− 1}

P (Y = k, Z = l) = P (X = ak + l) =
1

n
=

1

a
· 1
b
= P (Y = k) · P (Z = l) .

Thus Y and Z are independent. In addition we also proved that

Y ∼ UNI {0, 1, . . . , b− 1} and Z ∼ UNI {0, 1, . . . , a− 1} .


