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1 Regression in one-dimension
Imagine that we work with a random variable X . Let us make N experiments, and
let the observed values be X1, X2, . . . , XN . If we replace each observed value by a
constant c, then we make an error at each replacement.

Minimizing the expected value of the absolute error. The absolute values of the
errors are:

|X1 − c|, |X2 − c|, . . . , |XN − c|

The average of the absolute errors is

|X1 − c|+ |X2 − c|+ . . .+ |XN − c|
N

For large N , this average is approximated by the expected value of |X − c|:

|X1 − c|+ |X2 − c|+ . . .+ |XN − c|
N

≈

E(|X − c|) =

∞∫
−∞

|x− c| f(x) dx

We learned in Part III that this integral is minimal if c is the median of X .

Minimizing the expected value of the squared error. The squares of the errors are:

(X1 − c)2, (X2 − c)2, . . . , (XN − c)2

The average of the squared errors is

(X1 − c)2 + (X2 − c)2 + . . .+ (XN − c)2

N

For large N , this average is approximated by the expected value of (X − c)2:

(X1 − c)2 + (X2 − c)2 + . . .+ (XN − c)2

N
≈

E
(
(X − c)2

)
=

∞∫
−∞

(x− c)2 f(x) dx

We learned in Part III that this integral is minimal if c is the expected value of X .
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2 Regression in two-dimensions
Imagine that we work with a two-dimensional random variable (X,Y ). Let us make
N experiments, and let the observed values be (X1, Y1), (X2, Y2), . . . , (XN , YN ). If
we replace each observed Y -value by a function of the X-value, that is, Y is replaced
by k(X), then we make an error at each replacement.

Minimizing the expected value of the absolute error. The absolute values of the
errors are:

|Y1 − k(X1)|, |Y2 − k(X2)|, . . . , |YN − k(XN )|

The average of the absolute errors is

|Y1 − k(X1)|+ |Y2 − k(X2)|+ . . .+ |YN − k(XN )|
N

≈

For large N , this average is approximated by the expected value of |Y − k(X)|:

|Y1 − k(X1)|+ |Y2 − k(X2)|+ . . .+ |YN − k(XN )|
N

≈

E(|Y − k(X)|) =

∫∫
R2

|y − k(x)| f(x, y) dx dy =

∫∫
R2

|y − k(x)| f1(x) f2|1(y|x)) dx dy =

∞∫
−∞

 ∞∫
−∞

|y − k(x)| f2|1(y|x)) dy

 f1(x) dx

For all x, the inner integral is minimal if k(x) is the conditional median, that is, the me-
dian of the conditional distribution associated to the condition X = x. The conditional
median can be calculated from the equation

F2|1(y|x) =
1

2

so that we express y in term of x to get the function y = k(x).

Minimizing the expected value of the squared error. The squares of the errors are:

(Y1 − k(X1))
2
, (Y2 − k(X2))

2
, . . . , (YN − k(XN ))

2

The average of the squared errors is

(Y1 − k(X1))
2

+ (Y2 − k(X2))
2

+ . . .+ (YN − k(XN ))
2

N
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For large N , this average is approximated by the expected value of (Y − k(X))
2:

(Y1 − k(X1))
2

+ (Y2 − k(X2))
2

+ . . .+ (YN − k(XN ))
2

N
≈

E
(

(Y − k(X))
2
)

=

∫∫
R2

(y − k(x))2 f(x, y) dx dy =

∫∫
R2

(y − k(x))2 f1(x) f2|1(y|x)) dx dy =

∞∫
−∞

 ∞∫
−∞

(y − k(x))2 f2|1(y|x)) dy

 f1(x) dx

For all x, the inner integral is minimal if k(x) is the conditional expected value, that is,
the expected value of the conditional distribution associated to the condition X = x.
The conditional expected value can be calculated by integration:

k(x) = m1(x) =

∫ ∞
−∞

y f2|1(y|x) dy

3 Linear regression
Imagine that we work with a two-dimensional random variable (X,Y ). Let us make
N experiments, and let the observed values be (X1, Y1), (X2, Y2), . . . , (XN , YN ). If
we replace each observed Y -value by a linear function of the X-value, that is, Y is
replaced by aX + b, then at each of the replacements we make an error. The squares
of the errors are:

(Y1 − (aX1 + b))
2
, (Y2 − (aX2 + b))

2
, . . . , (YN − (aXN + b))

2

The average of the squared errors is

(Y1 − (aX1 + b))
2

+ (Y2 − (aX2 + b))
2

+ . . .+ (YN − (aXN + b))
2

N

For large N , this average is approximated by the expected value of (Y − (aX + b))
2:

(Y1 − (aX1 + b))
2

+ (Y2 − (aX2 + b))
2

+ . . .+ (YN − (aXN + b))
2

N
≈

E
(

(Y − (aX + b))
2
)

=

∫∫
R2

(y − (ax+ b))
2
f(x, y) dx dy

4



We may be interested in finding the values of a and b so that the expected value of the
squared error is minimal.

Solution. Expanding the square (y − (ax+ b))
2 in the above integral, we get six

terms, so the integral is equal to the sum of six integrals as follows:

E
(

(Y − (aX + b))
2
)

=∫∫
R2

y2 f(x, y) dx dy + a2
∫∫
R2

x2 f(x, y) dx dy + b2
∫∫
R2

f(x, y) dx dy−

−2a

∫∫
R2

xy f(x, y) dx dy − 2b

∫∫
R2

y f(x, y) dx dy + 2ab

∫∫
R2

x f(x, y) dx dy

Each of these six integrals is a constant, so the formula itself is a two-variable quadratic
formula. The values of a and b for which this quadratic formula is minimal can be
determined by taking the partial derivatives of this quadratic formula with respect to a,
and with respect to b, and then solving the arising system of equations for a and b. We
omit the details of the calculation, the reader can make it or accept that the solution is

aopt = r
σ2
σ1

bopt = µ2 − aopt µ1 = µ2 − r
σ2
σ1

µ1

Thus, the equation of the line yielding the smallest expected value for the squared error
is

y = µ2 + r
σ2
σ1

(x− µ1)

or, equivalently

y − µ2

σ2
= r

x− µ1

σ1

This line is called the regression line.

Expected value of the squared error. When we use the regression line, the value of
the average of the squared errors is

(Y1 − (aoptX1 + bopt))
2

+ (Y2 − (aoptX2 + bopt))
2

+ . . .+ (YN − (aoptXN + bopt))
2

N

For largeN , this average is approximated by the expected value of (Y − (aoptX + bopt))
2,

which is equal to∫∫
R2

(y − (aoptx+ bopt))
2
f(x, y) dx dy
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It can be shown that this integral is equal to

σ2
2

(
1− r2

)
The expression σ2

2

(
1− r2

)
consist of two factors. The first factor is the variance of

the random variable Y . The second factor is
(
1− r2

)
. Since the expected value of the

squared error cannot be negative,
(
1− r2

)
cannot be negative, so r2 cannot be larger

than 1, that is, r is between −1 and 1, equality permitted. Moreover,
(
1− r2

)
is a

decreasing function of r2, so the larger r2 is, the smaller
(
1− r2

)
is, that is, if r2 is

close to 1, then replacing Y by aoptX + bopt causes, in most cases, a smaller error, if r2

is close to 0, then replacing Y by aoptX+bopt causes, in most cases, a larger error. This
is why we may consider r2 or |r| as a measure of how well Y can be approximated by
a linear function of X , that is, how strong the linear relationship is between X and Y .

Using a calculator. More sophisticated calculators have a key to determine the slope
and the intercept of the regression line, as well.

Using Excel. In Excel, the command SLOPE (in Hungarian: MEREDEKSÉG ), and
INTERCEPT (in Hungarian: METSZ ) give the slope and the intercept of the regression
line.

4 Confidence intervals

Construction of a finite confidence interval when σ is known. Let X be a normally
distributed random variable with parameters µ and σ, and let Xn be the average of n
experimental results. Since Xn follows a normal distribution with parameters µ and
σ/
√
n, the standardized average

Xn − µ
σ√
n

follows the standard normal distribution. So

P

(
−x <

Xn − µ
σ√
n

< x

)
= 2Φ(x)− 1

If, for a given probability value p, we choose x so that

2Φ(x)− 1 = p

that is,

x = Φ−1
(

1 + p

2

)
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then

P

(
−Φ−1

(
1 + p

2

)
<

Xn − µ
σ√
n

< Φ−1
(

1 + p

2

))
= p

or, equivalently,

P
(
µ− σ√

n
Φ−1

(
1 + p

2

)
< Xn < µ+

σ√
n

Φ−1
(

1 + p

2

))
= p

which means that, with a probability p, both of the following inequalities hold:

µ− σ√
n

Φ−1
(

1 + p

2

)
< Xn

Xn < µ+
σ√
n

Φ−1
(

1 + p

2

)
The first inequality is equivalent to

µ < Xn +
σ√
n

Φ−1
(

1 + p

2

)
The second is equivalent to

Xn −
σ√
n

Φ−1
(

1 + p

2

)
< µ

This is how we get that, with a probability p, both of the following inequalities hold:

Xn −
σ√
n

Φ−1
(

1 + p

2

)
< µ < Xn +

σ√
n

Φ−1
(

1 + p

2

)
which means that, with a probability p, the random interval(

Xn −
σ√
n

Φ−1
(

1 + p

2

)
, Xn +

σ√
n

Φ−1
(

1 + p

2

))
called confidence interval, contains the parameter µ. The center of the interval is Xn,
the radius (the half of the length) of the interval is σ√

n
Φ−1

(
1+p
2

)
. Notice that the

radius (the half of the length) of the interval is a constant, that is, it does not depend on
randomness.

The result we have can be interpreted also like this: the random point Xn, with a
probability p, is an estimation for µ: if µ is not known for us, then we are able to
declare a random point based on experimental results, so that, with a probability p, this
random point is so close to µ that their difference is less than σ√

n
Φ−1

(
1+p
2

)
.

Construction of an infinitely long confidence interval when σ is known. Let X
be again a normally distributed random variable with parameters µ and σ. Let Xn
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be the average if n experimental result. Since Xn follows a normal distribution with
parameters µ and σ/

√
n, the standardized average

Xn − µ
σ√
n

follows the standard normal distribution. So

P

(
Xn − µ

σ√
n

< x

)
= Φ(x)

If, for a given probability value p, we choose x so that Φ(x) = p, that is, x = Φ−1 (p),
then

P

(
Xn − µ

σ√
n

< Φ−1 (p)

)
= p

or, equivalently,

P
(
Xn < µ+

σ√
n

Φ−1 (p)

)
= p

which means that, with a probability p, the following inequality holds:

Xn < µ+
σ√
n

Φ−1 (p)

This inequality is equivalent to

Xn −
σ√
n

Φ−1 (p) < µ

This is how we get that, with a probability p, the following inequality holds:

Xn −
σ√
n

Φ−1 (p) < µ

which means that, with a probability p, the infinitely long random interval with the left
end point

Xn −
σ√
n

Φ−1 (p)

called confidence interval, contains the parameter µ.

The result we have can be interpreted also like this: the point

Xn −
σ√
n

Φ−1 (p)
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with a probability p, is a lower bound for µ: if µ is not known for us, then we are able
to declare a random point based on experimental results, so that, with a probability p,
this random point is less than µ.

Construction of a finite confidence interval when σ is not known. Let X be a nor-
mally distributed random variable with parameters µ and σ, and let Xn be the average
of the experimental results X1, X2, . . . , Xn. If σ is not known for us, then we may
replace it by the sample standard deviation, which is

s∗n =

√
(X1 −X)2 + (X2 −X)2 + . . .+ (Xn −X)2

n− 1

The random variable, which is a modification of the standardized average,

Xn − µ
s∗n√
n

follows the t-distribution with degrees of freedom n − 1. (Accept this fact without a
proof.) So, using the distribution function F (x) of the t-distribution with degrees of
freedom n− 1, we get that

P

(
−x <

Xn − µ
σ√
n

< x

)
= 2F (x)− 1

If, for a given probability value p, we choose x so that

2F (x)− 1 = p

that is,

x = F−1
(

1 + p

2

)
then

P

(
−F−1

(
1 + p

2

)
<

Xn − µ
σ√
n

< F−1
(

1 + p

2

))
= p

or, equivalently,

P
(
µ− s∗n√

n
F−1

(
1 + p

2

)
< Xn < µ+

s∗n√
n
F−1

(
1 + p

2

))
= p

which means that, with a probability p, both of the following inequalities hold:

µ− s∗n√
n
F−1

(
1 + p

2

)
< Xn
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Xn < µ+
s∗n√
n
F−1

(
1 + p

2

)
The first inequality is equivalent to

µ < Xn +
s∗n√
n
F−1

(
1 + p

2

)
The second is equivalent to

Xn −
s∗n√
n
F−1

(
1 + p

2

)
< µ

This is how we get that, with a probability p, both of the following inequalities hold:

Xn −
s∗n√
n
F−1

(
1 + p

2

)
< µ < Xn +

s∗n√
n
F−1

(
1 + p

2

)
which means that, with a probability p, the random interval(

Xn −
s∗n√
n
F−1

(
1 + p

2

)
, Xn +

s∗n√
n
F−1

(
1 + p

2

))
called confidence interval, contains the parameter µ. The center of the interval is Xn,
the radius (the half of the length) of the interval is

s∗n√
n
F−1

(
1 + p

2

)
The radius (the half of the length) of the interval is now not a constant, but it depends
on randomness.

The result we have can be interpreted also like this: the random point Xn, with
a probability p, is an estimation for µ: if µ is not known for us, then we are able to
declare a random point based on experimental results, so that, with a probability p, this
random point is so close to µ that their difference is less than s∗n√

n
F−1

(
1+p
2

)
.

5 U-tests
Six tests, called U-tests (also called Z-tests) will be discussed in this chapter. The six
cases are:

1. U-test 1: Case of "less than", when n is given

2. U-test 2: Case of "less than", when n is calculated

3. U-test 3: Case of "equality", when n is given

4. U-test 4: Case of "equality", when n is calculated
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5. U-test 5: Case of "equality", when an interval is considered instead of the point
µ0

6. U-test 6: Case of "two populations"

In all of these tests, except the last one, which is at the end of this chapter, X is a
normally distributed random variable, Xn is the average of n experimental results for
X .

U-test 1: Case of "less than", when n is given. X is a normally distributed random
variable with parameters µ and σ, where σ is known, but µ is not known. µ0 is a
given value. On the basis of n experimental results for X (where n is given), we
want to decide whether the hypothesis µ ≤ µ0 holds or does not hold. For a given p0
probability value, which is (a little bit) less than 1, we require that

1. if µ < µ0, then the probability of accepting the hypothesis is greater than p0,

2. if µ = µ0, then the probability of accepting the hypothesis is equal to p0,

3. if µ > µ0, then the probability of accepting the hypothesis is less than p0,

4. if µ is "very large", then the probability of accepting the hypothesis is "very
small".

Solution. For fixed µ, σ, n and b, the probability

P
(
Xn < b

)
= Φ

(
b− µ
σ√
n

)

is equal to the area on the left side of b under the graph of the density function of Xn.
For fixed σ, n and b, this expression is a function of µ, which is called the power
function of the U-test.

Now, for fixed σ, µ0, p0 (≈ 1) and n, we look for b so that

Φ

(
b− µ0

σ√
n

)
= p0

Here is the solution to this equation:

b− µ0
σ√
n

= Φ−1 (p0)

b = µ0 +
σ√
n

Φ−1 (p0)

Since
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1. for µ = µ0, we have P
(
Xn < b

)
= Φ

(
b−µ0
σ√
n

)
= p0,

2. the power function is a strictly decreasing function of µ, approaching 0 at∞,

we get that the following test works as required.

U-test 1: Case of "less than", when n is given. We take the average Xn of the exper-
imental results, and compare it to the critical value b, which was determined above in
terms of given parameter values. If Xn < b , then we accept the hypothesis , otherwise
we reject the hypothesis.

U-test 2: Case of "less than", when n is calculated. X is a normally distributed
random variable with parameters µ and σ, where σ is known, but µ is not known.
µ0 < µ1 are given values. On the basis of n experimental results for X , we want to
decide whether the hypothesis µ ≤ µ0 holds or does not hold. Contrary to U-test 1,
now n is not given. In this U-test, we have to determine n so that more requirements
will be satisfied. Namely, for a given p0 probability value, which is (a little bit) less
than 1, and for a given p1 (small) probability value, we require that

1. if µ < µ0, then the probability of accepting the hypothesis is greater than p0,

2. if µ = µ0, then the probability of accepting the hypothesis is equal to p0,

3. if µ = µ1, then the probability of accepting the hypothesis is equal to p1,

4. if µ > µ1, then the probability of accepting the hypothesis is less than p1,

5. if µ is "very large", then the probability of accepting the hypothesis is "very
small".

Solution. Now we look for b and n so that

Φ

(
b− µ0

σ√
n

)
= p0

Φ

(
b− µ1

σ√
n

)
= p1

Here is the solution to this system of equations:

b− µ0
σ√
n

= Φ−1 (p0)

b− µ1
σ√
n

= Φ−1 (p1)

b− µ0 =
σ√
n

Φ−1 (p0)
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b− µ1 =
σ√
n

Φ−1 (p1)

µ1 − µ0 =
σ√
n

(
Φ−1 (p0)− Φ−1 (p1)

)
n =

(
σ

µ1 − µ0

(
Φ−1 (p0)− Φ−1 (p1)

))2

b = µ0 +
σ√
n

Φ−1 (p0)

= µ0 + (µ1 − µ0)
Φ−1 (p0)

Φ−1 (p0)− Φ−1 (p1)

Since

1. for µ = µ0, we have P
(
Xn < b

)
= p0,

2. for µ = µ1, we have P
(
Xn < b

)
= p1,

3. the power function is a strictly decreasing function, approaching 0 at∞,

we get that the following test works as required.

U-test 2: Case of "less than", when n is calculated. We calculate n and b according
to the above formulas, and then we take the average Xn of the experimental results,
and compare it to b. If Xn < b , then we accept the hypothesis , otherwise we reject
the hypothesis.

Remark. In both of the above tests, we have to compare the average Xn of the exper-
imental results to b, that is, we have to analyze whether the inequality

Xn < µ0 +
σ√
n

Φ−1 (p0)

holds or does not hold. This inequality is equivalent to the following inequality:

Xn − µ0
σ√
n

< Φ−1 (p0)

The expression on the left side of this inequality is called the U-value of the tests:

U =
Xn − µ0

σ√
n

Using the notion of the U-value, both of the above tests may be performed so that we
calculate the U-value, and compare it the so called standardized critical value

Ucrit = Φ−1 (p0)

Notice that the standardized critical value Ucrit depends only on the probability p0.
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U-test 1 and 2, cases of "less than" - standardized. We determine U from the exper-
imental results, and we calculate Ucrit, and then compare them. If U < Ucrit, then we
accept the hypothesis, otherwise we reject the hypothesis.

U-test 3: Case of "equality", when n is given. X is a normally distributed random
variable with parameters µ and σ, where σ is known, but µ is not known. µ0 is a
given value. On the basis of n experimental results for X (where n is given), we
want to decide whether the hypothesis µ = µ0 holds or does not hold. For a given p0
probability value, which is (a little bit) less than 1, we require that

1. if µ = µ0, then the probability of accepting the hypothesis is equal to p0,

2. if µ 6= µ0, then the probability of accepting the hypothesis is less than p0,

3. if µ is "farther and farther from µ0", then the probability of accepting the hy-
pothesis is "smaller and smaller",

4. if µ is "very far from µ0", then the probability of accepting the hypothesis is
"very small".

Solution. For fixed µ, σ, n, a and b, the probability

P
(
a < Xn < b

)
= Φ

(
b− µ
σ√
n

)
− Φ

(
a− µ
σ√
n

)

is equal to the area between a and b under the graph of the density function of Xn.
For fixed σ, n, a, b, this expression defines a function of µ, which is called the power
function of the U-test.

For a given µ0, and ∆b, the numbers a = µ0 −∆b and b = µ0 + ∆b define a symmet-
rical interval around µ0, and when µ = µ0, then

P
(
µ0 −∆b < Xn < µ0 + ∆b

)
= 2Φ

(
∆b
σ√
n

)
− 1

Now we look for ∆b so that

2Φ

(
∆b
σ√
n

)
− 1 = p0

Here is the solution to this equation:

∆b =
σ√
n

Φ−1
(

1 + p0
2

)
Since

14



1. for µ = µ0, we have P
(
µ0 −∆b < Xn < µ0 + ∆b

)
= p0,

2. forµ 6= µ0, we have P
(
µ0 −∆b < Xn < µ0 + ∆b

)
< p0,

3. the power function is strictly increasing on the left side of µ0, and strictly de-
creasing on the right side of µ0, and it is approaching 0 both at −∞ and at∞,

we get that the following test works as required.

U-test 3: Case of "equality", when n is given. We take the average Xn of the ex-
perimental results, and compare it to the critical values µ0 − ∆b, µ0 + ∆b. If Xn is
between them, then we accept the hypothesis , otherwise we reject the hypothesis.

U-test 4: Case of "equality", when n is calculated. X is a normally distributed
random variable with parameters µ and σ, where σ is known, but µ is not known.
µ0 < µ1 are given values. On the basis of n experimental results for X , we want to
decide whether the hypothesis µ = µ0 holds or does not hold. Contrary to U-test 3,
now n is not given, we have to determine n so that, in this U-test, more requirements
will be satisfied. Namely, for a given p0 probability value, which is (a little bit) less
than 1, and for a given p1 (small) probability value, we require that

1. if µ = µ0, then the probability of accepting the hypothesis is equal to p0,

2. if µ = µ1, then the probability of accepting the hypothesis is equal to p1,

3. if µ is "farther and farther from µ0", then the probability of accepting the hy-
pothesis is "smaller and smaller",

4. if µ is "very far from µ0", then the probability of accepting the hypothesis is
"very small".

Solution. The probability

P
(
a < Xn < b

)
= Φ

(
b− µ
σ√
n

)
− Φ

(
a− µ
σ√
n

)

is equal to the area between a and b under the graph of the density function of Xn. For
fixed σ, a and b and n, this expression is a function of µ, the so called power function
of the U-test. The power function obviously increases until the center of the interval
[a, b], and then decreases, and approaches 0 both at −∞ and∞. For a given µ0, and
∆b, the numbers a = µ0 −∆b and b = µ0 + ∆b define a symmetrical interval around
µ0, and

P
(
µ0 −∆b < Xn < µ0 + ∆b

)
= Φ

(
(µ0 + ∆b)− µ

σ√
n

)
−Φ

(
(µ0 −∆b)− µ

σ√
n

)
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When µ = µ0, then

P
(
µ0 −∆b < Xn < b = µ0 + ∆b

)
= 2Φ

(
∆b
σ√
n

)
− 1

Now we look for ∆b and n so that

2Φ

(
∆b
σ√
n

)
− 1 = p0

Φ

(
(µ0 + ∆b)− µ1

σ√
n

)
− Φ

(
(µ0 −∆b)− µ1

σ√
n

)
= p1

We can easily handle the first equation, and we get that

∆b =
σ√
n

Φ−1
(

1 + p0
2

)
which is a simple linear relation between ∆b and 1√

n
. In regards to the second equation,

let us notice that (µ0 −∆b)− µ1 is a negative number far enough from 0, so

Φ

(
(µ0 −∆b)− µ1

σ√
n

)
≈ 0

and, omitting this term in the second equation, we get the following approximate equa-
tion:

Φ

(
(µ0 + ∆b)− µ1

σ√
n

)
= p1

From here we get:

(µ0 + ∆b)− µ1 =
σ√
n

Φ−1 (p1)

which is another simple linear relation between ∆b and 1√
n

. The two linear equations
constitute a system of linear equations for ∆b and 1√

n
, which can be solved. From the

solution we get n and ∆b:

n =

(
σ

µ1 − µ0

(
Φ−1

(
1 + p0

2

)
− Φ−1 (p1)

))2

∆b = (µ1 − µ0)
Φ−1

(
1+p0

2

)
Φ−1

(
1+p0

2

)
− Φ−1 (p1)

So the following test works as required.
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U-test 4: Case of "equality", when n is calculated. We calculate the value of n from
the above formula, and round up what we get. We calculate ∆b, too. Then we make n
experiments for X , take the average Xn of the experimental results, and compare it to
the critical values µ0−∆b and µ0 + ∆b. If Xn is between the critical values, then we
accept the hypothesis , otherwise we reject the hypothesis.

Remark. In Test 3 and Test 4, we have to compare the averageXn of the experimental
results to µ0 −∆b and µ0 + ∆b, that is, we have to analyze whether the inequalities

µ0 −
σ√
n

Φ−1
(

1 + p0
2

)
< Xn < µ0 +

σ√
n

Φ−1
(

1 + p0
2

)
hold or do not hold. These inequalities are equivalent to the following inequalities:

−Φ−1
(

1 + p0
2

)
<

Xn − µ0
σ√
n

< Φ−1
(

1 + p0
2

)
The expression in the middle of these inequalities is called the U-value of the tests:

U =
Xn − µ0

σ√
n

and the expression on the right side is the so called standardized critical value:

Ucrit = Φ−1
(

1 + p0
2

)
Notice that the standardized critical value Ucrit depends only on the probability p0, but
Ucrit for Test 3 and Test 4 is not the same as Ucrit for Test 1 and Test 2. Using the notions
of U and Ucrit, we may write the above inequalities like this:

−Ucrit < U < Ucrit

or, equivalently,

|U | < Ucrit

We see that Test 3 and Test 4 may be performed so that we calculate the absolute value
of the U-value, and compare it the standardized critical value.

U-test 3 and 4, cases of "equality" - standardized. We determine U from the experi-
mental results, and we calculate Ucrit, and then we compare the absolute value of U to
Ucrit. If |U | < Ucrit , then we accept the hypothesis , otherwise we reject the hypothesis.

U-test 5: Case of "equality", when an interval is considered instead of a point. X
is a normally distributed random variable with parameters µ and σ, where σ is known,
but µ is not known. µ0 < µ1 < µ2 are given values. Let µT1 and µT2 mean the points
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on the left side of µ0 which we get if µ1 and µ2 are reflected about µ0. On the basis of
n experimental results for X , we want to decide whether the hypothesis µ = µ0 holds
or does not hold. Similar to U-test 4, n is not given. We have to determine n so that,
in this U-test, more requirements will be satisfied. Namely, for a given p1 probability
value, which is (a little bit) less than 1, and for a given p2 (small) probability value, we
require that

1. if µT1 < µ < µ1, then the probability of accepting the hypothesis is greater than
p1,

2. if µ < µT2 or µ > µ2, then the probability of accepting the hypothesis is smaller
than p2,

3. if µ is "farther and farther from µ0", then the probability of accepting the hy-
pothesis is "smaller and smaller",

4. if µ is "very far from µ0", then the probability of accepting the hypothesis is
"very small".

Remark. The first item of the above list of requirements may serve as an explanation
for the name of this U-test, since the interval [µT1 , µ1] is considered instead of the point
µ0.

Solution. We will try to determine b and its reflection bT about µ0, and n so that

Φ

(
b− µ1

σ√
n

)
− Φ

(
bT − µ1

σ√
n

)
= p1

Φ

(
b− µ2

σ√
n

)
− Φ

(
bT − µ2

σ√
n

)
= p2

Since bT − µ1 , bT − µ2 are negative numbers far enough from 0,

Φ

(
bT − µ1

σ√
n

)
≈ 0

Φ

(
bT − µ2

σ√
n

)
≈ 0

and we get the approximate equations:

Φ

(
b− µ1

σ√
n

)
= p1

Φ

(
b− µ2

σ√
n

)
= p2
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Taking the inverse of the function Φ, we get that

b− µ1 =
σ√
n

Φ−1 (p1)

b− µ2 =
σ√
n

Φ−1 (p2)

which is system of linear equations for 1√
n

and b. The solution for n and b is:

n =

(
σ

µ2 − µ1

(
Φ−1 (p1)− Φ−1 (p2)

))2

b = µ1 + (µ2 − µ1)
Φ−1 (p1)

Φ−1 (p1)− Φ−1 (p2)

So the following test works as required.

U-test 5: Case of "equality", when an interval is considered instead of a point. We
calculate the value of n from the above formula, and round up what we get. We calcu-
late b, too. Then we make n experiments for X , take the average Xn of the experimen-
tal results, and compare it to the critical values bT and b. If Xn is between the critical
values, then we accept the hypothesis , otherwise we reject the hypothesis.

U-test 6: Case of two populations. X1 is a normally distributed random variable with
parameters µ1 and σ1, X2 is a normally distributed random variable with parameters
µ2 and σ2. We assume that σ1 and σ2 are known for us, but µ1 and µ2 are not. On the
basis of n1 experimental results for X1 and n2 experimental results for X2 (n1 and n2
are given), we want to decide whether the hypothesis µ1 = µ2 holds or does not hold.
For a given p0 probability value, which is (a little bit) less than 1, we require that

1. if µ1 = µ2, then the probability of accepting the hypothesis is equal to p0,

2. if µ1 6= µ2, then the probability of accepting the hypothesis is less than p0,

3. if µ1 is "farther and farther from µ2", then the probability of accepting the hy-
pothesis is "smaller and smaller",

4. if µ1 is "very far from µ2", then the probability of accepting the hypothesis is
"very small".

Solution. The average of the n1 experimental results forX1 is (X1)n1
, and the average

of the n2 experimental results for X2 is (X2)n2
. Let us consider the difference of the

averages: (X1)n1
−(X2)n2

The expected value of this difference is µ1−µ2, its standard
deviation is√

σ2
1

n1
+
σ2
2

n2
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If the random variable U is defined like this:

U =
(X1)n1

− (X2)n2√
σ2
1

n1
+

σ2
2

n2

then the expected value of U is obviously

µ1 − µ2√
σ2
1

n1
+

σ2
2

n2

and its standard deviation is 1. Thus, if µ1 = µ2, then U follows the standard normal
distribution, which means that

P (−x < U < x) = 2Φ(x)− 1

Let us choose x so that 2Φ(x) − 1 = p0, that is, x = Φ−1
(
1+p0

2

)
. Let us take this x

value as a critical value Ucrit. Thus, if µ1 = µ2, then we have

P (−Ucrit < U < Ucrit) = p0

If µ1 6= µ2, then the distribution of U differs from the standard normal distribution,
and

P (−Ucrit < U < Ucrit) < p0

If µ1 and µ2 are farther and farther from each other, then the distribution of U becomes
more and more different from the standard normal distribution, and

P (−Ucrit < U < Ucrit)

becomes smaller and smaller. Thus, the following test works as required.

U-test 6: Case of two populations. We determine the value of U from the experimental
results, and compare its absolute value to the critical value Ucrit. If |U | is less than
Ucrit, then we accept the hypothesis , otherwise we reject the hypothesis.

Important remark: U-tests for NOT normally distributed random variables. At
the beginning of this chapter, we assumed that X was a normally distributed random
variable. However, if n, the number of experiments is large enough (say it is at least
25, or so), then Xn, the average of the experimental results for X is approximately
normally distributed even if X is not normally distributed. Since in the above tests we
were using the normality of Xn, the above tests are applicable for not normal random
variables, as well, if n, the number of experiments is large enough.
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6 T-tests
Tests, called T-tests will be discussed in this chapter. In all of them,X is a normally dis-
tributed random variable, Xn is the average of experimental results X1, X2, . . . , Xn,
and

s∗n =

√
(X1 −Xn)2 + (X2 −Xn)2 + . . .+ (Xn −Xn)2

n− 1

is the sample standard deviation.

T-test 1: Case of "equality". X is a normally distributed random variable with pa-
rameters µ and σ, where neither µ nor σ is known for us. µ0 is a given value. On the
basis of n experimental results for X (where n is given), we want to decide whether
the hypothesis µ = µ0 holds or does not hold. For a given p0 probability value, which
is (a little bit) less than 1, we require that

1. if µ = µ0, then the probability of accepting the hypothesis is equal to p0,

2. if µ 6= µ0, then the probability of accepting the hypothesis is less than p0,

3. if µ is "farther and farther from µ0", then the probability of accepting the hy-
pothesis is "smaller and smaller",

4. if µ is "very far from µ0", then the probability of accepting the hypothesis is
"very small".

Solution. If we knew σ, we could use a standardized U-test (see the remark after U-test
2), and we could calculate

U =
Xn − µ0

σ√
n

Since σ is not known for us, we have to replace σ by s∗n, the sample standard deviation.
This why we consider the random variable

T =
Xn − µ0

s∗n√
n

Based on experimental results, the value of T can be calculated. If µ = µ0, then the
random variable T follows t-distribution with degrees of freedom n− 1, so

P (−b < T < b) = 2F (b)− 1

where F (x) denotes the distribution function of the t-distribution with degrees of free-
dom n− 1. We choose b so that 2F (b)− 1 = p0, that is, b = F−1( 1+p0

2 ). This b-value
will be called the critical value, and will be denoted by Tcrit:

Tcrit = F−1(
1 + p0

2
)
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Thus, if µ = µ0, then we get:

P (−Tcrit < T < Tcrit) = p0

If µ 6= µ0, then the random variable T follows a distribution different from t-distribution
with degrees of freedom n− 1, so that

P (−Tcrit < T < Tcrit) < p0

If µ is farther and farther from µ0, then the distribution of the the random variable T
becomes more and more different from t-distribution with degrees of freedom n − 1,
and

P (−Tcrit < T < Tcrit)

becomes smaller and smaller. We shall not go into the mathematical details of this test.
However, we hope that the simulation files given bellow will help to accept that the
following test works as required.

T-test 1: Case of "equality". We calculate the value of T from the experimental results,
and compare its absolute value to the critical value Tcrit. If |T | is less than Tcrit, then
we accept the hypothesis , otherwise we reject the hypothesis.

T-test 2: Case of "less than". X is a normally distributed random variable with
parameters µ and σ, where neither µ nor σ is known for us. µ0 is a given value. On the
basis of n experimental results for X (where n is given), we want to decide whether
the hypothesis µ ≤ µ0 holds or does not hold. For a given p0 probability value, which
is (a little bit) less than 1, we require that

1. if µ < µ0, then the probability of accepting the hypothesis is greater than p0,

2. if µ = µ0, then the probability of accepting the hypothesis is equal to p0,

3. if µ > µ0, then the probability of accepting the hypothesis is less than p0,

4. if µ is "very large", then the probability of accepting the hypothesis is "very
small".

Solution. If we knew σ, we could use a standardized U-test (see the remark after U-test
4), and we could calculate

U =
Xn − µ0

σ√
n

Since σ is not known for us, we have to replace σ by s∗n, the sample standard deviation.
This why we consider the random variable

T =
Xn − µ0

s∗n√
n
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Based on experimental results, the value of T can be calculated. If µ = µ0, then the
random variable T follows t-distribution with degrees of freedom n− 1, so

P (T < b) = F (b)

where F (x) denotes the distribution function of the t-distribution with degrees of free-
dom n− 1. We choose b so that F (b) = p0, that is, b = F−1(p0). This b-value will be
called critical value, and will be denoted by Tcrit:

Tcrit = F−1(p0)

Thus, if µ = µ0, then we get:

P (T < Tcrit) = p0

If µ < µ0, then the random variable T follows a distribution different from t-distribution
with degrees of freedom n− 1, so that

P (T < Tcrit) > p0

If µ > µ0, then the random variable T follows a distribution different from t-distribution
with degrees of freedom n− 1, so that

P (T < Tcrit) < p0

If µ is very large, then P (T < Tcrit) < p0 becomes very small. We shall not go into
the mathematical details of this test. However, we hope that the simulation files given
bellow will help to accept that the following test works as required.

T-test 2: Case of "less than". We calculate the value of T from the experimental
results, and compare its absolute value to the critical value Tcrit. If T is less than Tcrit,
then we accept the hypothesis , otherwise we reject the hypothesis.

7 Chi-square-test for fitness
Imagine that you need a fair die, and your friend offers you one. You are glad to get
a die, but you want to be convinced that the die is really fair. So you toss the die
several times, and you get experimental results. How can you decide based on the
experimental results whether to accept the hypothesis that the die is fair or to reject
it? We will describe a test to decide whether to accept the hypothesis or to reject it.
Obviously, since the test is based on experimental results, the decision may be wrong:
even if the die is fair, randomness may cause us to reject the hypothesis, so even if the
die is fair, the probability of accepting the hypotheses must be less than 1. Let this
probability be denoted by p0. This is why, for a given p0 probability value, which is (a
little bit) less than 1, we require that

1. if the hypothesis holds, then the test, with a probability p0, will suggest to accept
the hypothesis,
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2. if the hypothesis does not hold, then the test will suggest to accept the hypothesis
with a probability smaller than p0,

3. if the die differs from a fair die only a "little bit", then the test will suggest to
accept the hypothesis with a probability only a "little bit" smaller than p0,

4. if the die is "far" from a fair die, then the test will suggest to accept the hypothesis
with a "small" probability.

Solution. When you toss the die, and observe the number on the top, then the possible
values are 1, 2, 3, 4, 5, 6. Make n tosses. Observe the count for each possible value,
that is, how many times you have got a 1, how many times you have got a 2, and so on.
Then calculate the so called expected counts, too, which means that the hypothetical
probability of each possible value is multiplied by n. Then, for each possible value,
take the difference between the observed count and the expected count, take the square
of the difference, and then divide by the expected count. For each possible value you
get a number. Now add these numbers. This sum will be denoted by K2. Since the
value of K2 is affected by the experimental results, K2 is a random variable. Suppose
that the number of tosses was large enough to guarantee that all the expected counts
are greater than 10. If this condition is not fulfilled, then this test is not applicable.
If this condition is fulfilled, then the random variable K2 approximately follows the
distribution called chi-square distribution with degrees of freedom r − 1, where r is
the number of possible values for the die. For a usual die, r = 6. If F (x) denotes the
distribution function of the chi-square distribution with degrees of freedom r− 1, then
P(K2 < x) = F (x). Let us choose x so that F (x) = p0, that is, x = F−1(p0). This
x value will be denoted by K2

crit, and will be called the critical value of the test. We do
not go into the mathematical details, just state that the test given here works properly.
Playing with the Excel files, given below, you may learn the algorithm of the test again,
and you may have an experience that the test really works as desired.

Chi-square-test for fitness. We calculate the value ofK2 from the experimental results,
and compare it to the critical value K2

crit. If K2 is less than K2
crit, then we accept the

hypothesis , otherwise we reject the hypothesis.

8 Chi-test for standard deviation (Chi-square-test for
variance)

X is a normally distributed random variable with parameters µ and σ, where neither µ
nor σ is known for us. σ0 is a given value. On the basis of n experimental results for
X (where n is given), we want to decide whether the hypothesis σ = σ0 holds or does
not hold. For a given p0 probability value, which is (a little bit) less than 1, we require
that
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1. if σ = σ0, then the probability of accepting the hypothesis is equal to p0,

2. if σ 6= σ0, then the probability of accepting the hypothesis is less than p0,

3. if σ is "farther and farther from σ0", then the probability of accepting the hypoth-
esis is "smaller and smaller",

4. if σ is "very far from σ0", then the probability of accepting the hypothesis is
"very small".

Solution. Let us take the sample standard deviation, which is

s∗n =

√
(X1 −X)2 + (X2 −X)2 + . . .+ (Xn −X)2

n− 1

and let the random variable K be the sample standard deviation divided by the hypo-
thetical standard deviation σ0:

K =
s∗n
σ0

If the hypothesis holds, then this random variable follows the distribution called chi-
distribution with degrees of freedom n − 1. If F (x) denotes the distribution function
of the chi-distribution with degrees of freedom n− 1, then P(K < x) = F (x). Let us
choose x so that F (x) = p0, that is, x = F−1(p0). This x value will be denoted by
Kcrit, and will be called the critical value of the test. We do not go into the mathematical
details, just state that the test given here works properly. Playing with the Excel files,
given below, you may learn the algorithm of the test again, and you may have an
experience that the test really works as desired.

Chi-test for standard deviation (Chi-square-test for variance). We calculate the value
of K from the experimental results, and compare it to the critical value Kcrit. If K is
less than Kcrit, then we accept the hypothesis , otherwise we reject the hypothesis.

Remark. If a random variable follows a chi-distribution with degrees of freedom d,
then its square follows chi-square distribution with degrees of freedom d. This is why
this test is applicable to test not only the standard deviation, but the variance. If we test
the variance and use the sample variance (s∗n)2, then the critical value K2

crit for (s∗n)2

should be chosen using the distribution function of the chi-square distribution.

9 F-test for equality of variances (of standard devia-
tions)

X1 is a normally distributed random variable with parameters µ1 and σ1, X2 is a nor-
mally distributed random variable with parameters µ2 and σ2. The parameters µ1, µ2,
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µ1, µ2 are not known for us. On the basis of n1 experimental results for X1 and n2
experimental results for X2 (n1 and n2 are given), we want to decide whether the hy-
pothesis σ1 = σ2 holds or does not hold. For a given p0 probability value, which is (a
little bit) less than 1, we require that

1. if σ1 = σ2, then the probability of accepting the hypothesis is equal to p0,

2. if σ1 6= σ2, then the probability of accepting the hypothesis is less than p0,

3. if σ1 is "farther and farther from σ2", then the probability of accepting the hy-
pothesis is "smaller and smaller",

4. if σ1 is "very far from σ2", then the probability of accepting the hypothesis is
"very small".

Solution. Let the sample standard deviation for X1 be s∗1, and the sample standard
deviation for X2 be s∗2. Their squares are the so called sample variances: (s∗1)2 and
(s∗2)2. Let us take the quotient of the sample variances:

F =
(s∗1)2

(s∗2)2

If the hypothesis holds, then the random variable F follows the distribution called
F-distribution with degrees of freedom n1 − 1, n2 − 1. Using (the inverse of) the
distribution function of the F-distribution with degrees of freedom n1 − 1, n2 − 1, we
choose two critical values: Fcrit(lower) and Fcrit(upper) so that

P(F < Fcrit(lower)) =
1− p0

2

P(F < Fcrit(upper)) =
1 + p0

2

With this choice of Fcrit(lower) and Fcrit(upper), we achieve that

P(Fcrit(lower) < F < Fcrit(upper)) = p0

We do not go into the mathematical details, just state that the test given here works
properly. Playing with the Excel files, given below, you may learn the algorithm of the
test again, and you may have an experience that the test really works as desired.

F-test for equality of standard deviations (F-test for equality of variances). We calcu-
late the value of F from the experimental results, and compare it to the critical values
Fcrit(lower) and Fcrit(upper). If F is between them, then we accept the hypothesis , other-
wise we reject the hypothesis.
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10 Test with ANOVA (Analysis of variance)

We have r normally distributed random variables: X1, X2, . . . , Xr, which have a com-
mon standard deviation σ, and possibly different expected values: µ1, µ2, . . . , µr. We
make a certain number of experiments for each: n1 experiments for X1, n2 experi-
ments for X2, and so on, nr experiments for Xr. On the basis of these experimental
results, we want to decide whether the hypothesis µ1 = µ2 = . . . = µr holds or does
not hold. For a given p0 probability value, which is (a little bit) less than 1, we require
that

1. if µ1 = µ2 = . . . = µr, then the probability of accepting the hypothesis is equal
to p0,

2. if µ1 = µ2 = . . . = µr is not true, then the probability of accepting the hypoth-
esis is less than p0,

3. if µ1, µ2, . . . , µr are farther and farther from each other, then the probability of
accepting the hypothesis is "smaller and smaller",

4. if µ1, µ2, . . . , µr are "very far from each other", then the probability of accepting
the hypothesis is "very small".

Solution. We remind the reader that, for a data-set z1, z2, . . . , zN , the average is

z =
z1 + z2 + . . .+ zN

N

and the variance is

(z1 − z)2 + (z2 − z)2 + . . .+ (zN − z)2

N

The n1 experiments for X1 constitute a data-set. Its average will be denoted by Ave1,
its variance will be denoted by Var1. Related to the random variable Xi, we get simi-
larly the average Avei and the variance Vari (i = 1, 2, . . . , r). The number of all exper-
iments is n =

∑
i ni. The proportion of the ith data-set is pi = ni/n (i = 1, 2, . . . , r).

The quantity

AVE of Ave =
∑
i

Avei pi

will be called the (weighted) average of the averages, and

AVE of Var =
∑
i

Vari pi

will be called the (weighted) average of the variances, and

VAR of Ave =
∑
i

(Avei − AVE)
2
pi
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will be called the (weighted) variance of the averages.The random variable F is now
defined by

F =
VAR of Ave
r−1

AVE of Var
n−1

If the hypothesis holds, then the random variable F follows the distribution called F-
distribution with degrees of freedom r−1, n−1. Using (the inverse of) the distribution
function of the F-distribution with degrees of freedom r−1, n−1, we choose the critical
value Fcrit so that

P(F < Fcrit) = p0

We do not go into the mathematical details, just state that the test given below works
properly. Playing with the Excel file, given below, you may learn the algorithm of the
test again, and you may have an experience that the test really works as desired.

Test with ANOVA (Analysis of variance). We calculate the value of F from the exper-
imental results, and compare F to the critical value Fcrit. If F is less than Fcrit, then
we accept the hypothesis , otherwise we reject the hypothesis.

28


	Regression in one-dimension
	Regression in two-dimensions
	Linear regression
	Confidence intervals
	U-tests
	T-tests
	Chi-square-test for fitness
	Chi-test for standard deviation (Chi-square-test for variance)
	F-test for equality of variances (of standard deviations)
	Test with ANOVA (Analysis of variance)

