Convex Geometry

1st midterm - SAMPLE

1) Consider the polynomial $p(t)=\sum_{i=0}^{n} a_{i} t^{i}$ as a point $\left(a_{0}, a_{1}, \ldots, a_{n}\right) \in$ \mathbb{R}^{n+1}. Let

$$
V=\left\{p \in \mathbb{R}^{n+1}: p(t) \geq 0 \text { for every } t \in \mathbb{R}\right\} .
$$

Prove that V is a closed, convex set.
(5 points)
2) Let K be the triangle with vertices $(0,0),(0,1)$ and $(1,0)$, and let L be the reflection of K to the origin. Determine the sets $K+L$ and $K-L$. (5 points)
3) Show that if $S \subseteq \mathbb{R}^{2}$ is an arbitrary nonempty set and $p \in \operatorname{int}$ conv S, then there are points $p_{1}, p_{2}, p_{3}, p_{4} \in S$ such that $p \in \operatorname{int} \operatorname{conv}\left\{p_{1}, p_{2}, p_{3}, p_{4}\right\}$. (5 points)
4) Prove that if $K \subset \mathbb{R}^{n}$ is convex, then $K+K=2 K$. Give an example showing that the same property does not hold if we drop the condition that K is convex.
(5 points)

