Convex Geometry

1st midterm - SAMPLE

1) Consider the polynomial $p(t) = \sum_{i=0}^{n} a_i t^i$ as a point $(a_0, a_1, \dots, a_n) \in \mathbb{R}^{n+1}$. Let

 $V = \{ p \in \mathbb{R}^{n+1} : p(t) \ge 0 \text{ for every } t \in \mathbb{R} \}.$

Prove that V is a closed, convex set. (5 points)

Solution: Let $p, q \in V$, and let $\lambda \in [0, 1]$. We need to show that the polynomial $h = \lambda p + (1 - \lambda)q$ is in V. Since $h(t) = \lambda p(t) + (1 - \lambda)q(t) \ge t$ for all $t \in \mathbb{R}$, this is satisfied and V is convex. Similarly, if $\{p_m\}$ is a sequence of polynomials in V and $\lim_{m\to\infty} p_m = p$ exists, then p is a polynomial of degree at most n, and for any $t \in \mathbb{R}$, we have $0 \le \lim_{m\to\infty} p_m(t) = p(t)$. Thus, $p \in V$, and V is closed.

2) Let K be the triangle with vertices (0,0), (0,1) and (1,0), and let L be the reflection of K to the origin. Determine the sets K + L and K - L. (5 points)

Solution: Note that L = -K. Furthermore, K + K and K - K can be obtained as $\bigcup_{x \in K} (x + K)$ and $\bigcup_{x \in K} (x - K)$. From this, we have that K - L = K + K is the triangle with vertices (0, 0), (2, 0) and (0, 2), and K + L = K - K is the convex hexagon with vertices (1, 0), (0, 1), (-1, 1), (-1, 0), (0, -1) and (1, -1).

3) Show that if $S \subseteq \mathbb{R}^2$ is an arbitrary nonempty set and $p \in \operatorname{int} \operatorname{conv} S$, then there are points $p_1, p_2, p_3, p_4 \in S$ such that $p \in \operatorname{int} \operatorname{conv} \{p_1, p_2, p_3, p_4\}$. (5 points)

Solution: Since $p \in \operatorname{int} \operatorname{conv} S$, there are points $q_1, q_2, q_3 \in \operatorname{conv} S$ such that p is in the interior of the triangle $\operatorname{conv} \{q_1, q_2, q_3\}$. By Carathéodory's theorem, for each q_i there are at most 3 points of S whose convex hull contains q_i . Thus, there are at most nine points of S whose convex hull P contains p in its interior. Then P is a convex k-gon with $k \leq 9$. Let us triangulate P with all diagonals starting at a given vertex. Since p lies on at most one of these diagonals, p lies in the interior of the union of two consecutive triangles.

4) Prove that if $K \subset \mathbb{R}^n$ is convex, then K + K = 2K. Give an example showing that the same property does not hold if we drop the condition that K is convex.

(5 points)

Solution: Since $K+K = \{p+q : p, q \in K \text{ and } 2K = \{2p : p \in K, \text{ we have } 2K \subseteq K+K \text{ for all sets } K.$ Now, let K be convex and let $p, q \in K$. Then $\frac{p+q}{2} \in K$ by convexity, which implies that $2 \cdot \frac{p+q}{2} = p+q \in 2K$. This implies that $K+K \subseteq 2K$, and thus, K+K = 2K. Finally, if $K = \{0,1\} \subset \mathbb{R}$, then $K+K = \{0,1,2\}$ has 3 elements whereas $2K = \{0,2\}$ has two elements, and thus, $K+K \neq 2K$.