Convex Geometry

1st midterm - SAMPLE

1) Consider the polynomial $p(t)=\sum_{i=0}^{n} a_{i} t^{i}$ as a point $\left(a_{0}, a_{1}, \ldots, a_{n}\right) \in$ \mathbb{R}^{n+1}. Let

$$
V=\left\{p \in \mathbb{R}^{n+1}: p(t) \geq 0 \text { for every } t \in \mathbb{R}\right\}
$$

Prove that V is a closed, convex set. (5 points)

Solution: Let $p, q \in V$, and let $\lambda \in[0,1]$. We need to show that the polynomial $h=\lambda p+(1-\lambda) q$ is in V. Since $h(t)=\lambda p(t)+(1-\lambda) q(t) \geq t$ for all $t \in \mathbb{R}$, this is satisfied and V is convex. Similarly, if $\left\{p_{m}\right\}$ is a sequence of polynomials in V and $\lim _{m \rightarrow \infty} p_{m}=p$ exists, then p is a polynomial of degree at most n, and for any $t \in \mathbb{R}$, we have $0 \leq \lim _{m \rightarrow \infty} p_{m}(t)=p(t)$. Thus, $p \in V$, and V is closed.
2) Let K be the triangle with vertices $(0,0),(0,1)$ and $(1,0)$, and let L be the reflection of K to the origin. Determine the sets $K+L$ and $K-L$. (5 points)
Solution: Note that $L=-K$. Furthermore, $K+K$ and $K-K$ can be obtained as $\bigcup_{x \in K}(x+K)$ and $\bigcup_{x \in K}(x-K)$. From this, we have that $K-L=K+K$ is the triangle with vertices $(0,0),(2,0)$ and $(0,2)$, and $K+$ $L=K-K$ is the convex hexagon with vertices $(1,0),(0,1),(-1,1),(-1,0)$, $(0,-1)$ and $(1,-1)$.
3) Show that if $S \subseteq \mathbb{R}^{2}$ is an arbitrary nonempty set and $p \in \operatorname{int}$ conv S, then there are points $p_{1}, p_{2}, p_{3}, p_{4} \in S$ such that $p \in \operatorname{int} \operatorname{conv}\left\{p_{1}, p_{2}, p_{3}, p_{4}\right\}$. (5 points)
Solution: Since $p \in \operatorname{int} \operatorname{conv} S$, there are points $q_{1}, q_{2}, q_{3} \in \operatorname{conv} S$ such that p is in the interior of the triangle conv $\left\{q_{1}, q_{2}, q_{3}\right\}$. By Carathéodory's theorem, for each q_{i} there are at most 3 points of S whose convex hull contains q_{i}. Thus, there are at most nine points of S whose convex hull P contains p in its interior. Then P is a convex k-gon with $k \leq 9$. Let us triangulate P with all diagonals starting at a given vertex. Since p lies on at most one of these diagonals, p lies in the interior of the union of two consecutive triangles.
4) Prove that if $K \subset \mathbb{R}^{n}$ is convex, then $K+K=2 K$. Give an example showing that the same property does not hold if we drop the condition that K is convex.
(5 points)
Solution: Since $K+K=\{p+q: p, q \in K$ and $2 K=\{2 p: p \in K$, we have $2 K \subseteq K+K$ for all sets K. Now, let K be convex and let $p, q \in K$. Then $\frac{p+q}{2} \in K$ by convexity, which implies that $2 \cdot \frac{p+q}{2}=p+q \in 2 K$. This implies that $K+K \subseteq 2 K$, and thus, $K+K=2 K$. Finally, if $K=\{0,1\} \subset \mathbb{R}$, then $K+K=\{0,1,2\}$ has 3 elements whereas $2 K=\{0,2\}$ has two elements, and thus, $K+K \neq 2 K$.

