Convex Geometry

2nd midterm - SAMPLE

1) A compact, convex set $K \subset \mathbb{R}^{n}$ is called strictly convex if its boundary does not contain a segment. Show that K is strictly convex if and only if every boundary point of K is an extremal point. (5 points)
2) Can the given sets be separated by a line? If yes, find a separating line. (5 points)

$$
A=\{(-1,1),(0,-1),(4,1)\}, \quad B=\{(-3,1),(1,-2)\}
$$

3) Show that if $K_{1}, K_{2}, \ldots, K_{m} \subseteq \mathbb{R}^{n}$ are closed, convex sets and $\bigcap_{i=1}^{m} K_{i} \neq$ \emptyset, then $\chi\left(\bigcup_{i=1}^{m} K_{i}\right)=1$. (5 points)
4) Using Euler's theorem prove that the coordinates of the f-vector $f=$ ($f_{0}, f_{1}, f_{2}, 1$) of a 3 -dimensional convex polytope satisfy the inequalities:

$$
\frac{f_{0}}{2}+2 \leq f_{2} \leq 2 f_{0}-4 ; \quad \frac{3 f_{0}}{2} \leq f_{1} \leq 3 f_{0}-6 .(5 \text { points })
$$

