Convex Geometry

2nd midterm - SAMPLE

1) A compact, convex set $K \subset \mathbb{R}^{n}$ is called strictly convex if its boundary does not contain a segment. Show that K is strictly convex if and only if every boundary point of K is an extremal point. (5 points)

Solution:

If the boundary of K contains a segment $[q, r]$, then the relative interior points of $[q, r]$ are not extremal points of K. On the other hand, assume that a boundary point p is not an extremal point of K. Then there is a segment $[q, r] \subseteq K$ containing p in its relative interior. Then $q, r \in \operatorname{bd}(K)$, since if one of them, say $q \in \operatorname{int}(K)$, then the fact that $r \in K$ would imply that any point of $[q, r] \backslash\{r\}$ lies in the interior of K, which would contradict the fact that $p \in \operatorname{bd}(K)$. Using the same argument it also follows that any point of $[p, q]$ lies in $\operatorname{bd}(K)$. Thus, $\operatorname{bd}(K)$ contains a segment.
2) Can the given sets be separated by a line? If yes, find a separating line. (5 points)

$$
A=\{(-1,1),(0,-1),(4,1)\}, \quad B=\{(-3,1),(1,-2)\}
$$

Solution:

The sets A and B can be separated by a line if and only if $\operatorname{conv}(A)$ and $\operatorname{conv}(B)$ can be separated by a line. Furthermore, since int $\operatorname{conv}(A) \neq$ $\emptyset=\operatorname{int} \operatorname{conv}(B)$, by Theorem 1 of Lecture $6, \operatorname{conv}(A)$ and $\operatorname{conv}(B)$ can be separated by a line if and only if int $\operatorname{conv}(A) \cap \operatorname{conv}(B)=\emptyset$. We show it by checking that A is contained in the open half plane 'above' the affine hull of B (i.e. the line through the two points of B); this will also imply that aff (B) separates A and B. The equation of the line containing B is $y=-\frac{3}{4} x-\frac{5}{4}$. Substituting the x-coordinates of the points $(-1,1),(0,-1),(4,1)$ into this equation, we obtain the values $-\frac{1}{2},-\frac{5}{4},-\frac{17}{4}$, respectively. Since each of these values is strictly less than the y-coordinate of the corresponding point, we have that A is contained in the open half plane 'above' the affine hull of B. Thus, A and B can be separated by a line, and an example of a separating line is the one with equation $y=-\frac{3}{4} x-\frac{5}{4}$.
3) Show that if $K_{1}, K_{2}, \ldots, K_{m} \subseteq \mathbb{R}^{n}$ are closed, convex sets and $\bigcap_{i=1}^{m} K_{i} \neq$ \emptyset, then $\chi\left(\bigcup_{i=1}^{m} K_{i}\right)=1$. (5 points)

Solution:

By the Exclusion-Inclusion formula for Euler characteristic, we have

$$
\chi\left(K_{1} \cup K_{2} \cup \ldots \cup K_{m}\right)=\sum_{j=1}^{m}(-1)^{j-1} \sum_{1 \leq i_{1}<i_{2}<\ldots<i_{j} \leq k} \chi\left(K_{i_{1}} \cap K_{i_{2}} \cap \ldots \cap K_{i_{j}}\right) .
$$

As $\bigcap_{i=1}^{m} K_{i} \neq \emptyset$, no intersection in the above formula is \emptyset, and since the Euler characteristic of a closed convex set is one, and the intersection of closed, convex sets is closed and convex, we have that

$$
\begin{gathered}
\chi\left(K_{1} \cup K_{2} \cup \ldots \cup K_{m}\right)=\binom{m}{1}-\binom{m}{2}+\binom{m}{3}-\ldots+(-1)^{m}\binom{m}{m}= \\
=\binom{m}{0}-\sum_{j=0}^{m}(-1)^{j}\binom{m}{j}=\binom{m}{0}=1 .
\end{gathered}
$$

4) Using Euler's theorem prove that the coordinates of the f-vector $f=$ $\left(f_{0}, f_{1}, f_{2}, 1\right)$ of a 3 -dimensional convex polytope satisfy the inequalities:

$$
\frac{f_{0}}{2}+2 \leq f_{2} \leq 2 f_{0}-4 ; \quad \frac{3 f_{0}}{2} \leq f_{1} \leq 3 f_{0}-6 .(5 \text { points })
$$

Solution:

Euler's theorem states that for any 3 -dimensional convex polytope P with f-vector $f=\left(f_{0}, f_{1}, f_{2}, 1\right)$, we have $f_{0}+f_{1}+f_{2}=2$. On the other hand, since every vertex of P lies on at least 3 edges, and every edge contains exactly two vertices, we have $2 f_{1} \geq 3 f_{0}$, implying that $f_{1} \geq \frac{3 f_{0}}{2}$ and also that $2\left(f_{0}+f_{2}-2\right) \geq 3 f_{0}$, or equivalently that $\frac{f_{0}}{2}+2 \leq f_{2}$. Similarly, every face of P has at least 3 edges, and every edge belongs to exactly 2 faces, and hence, we have $2 f_{1} \geq 3 f_{2}$. Thus, $2 f_{1} \geq 3\left(f_{1}+2-f_{0}\right)$, which implies that $f_{1} \leq 3 f_{0}-6$, and $2\left(f_{0}+f_{2}-2\right) \geq 3 f_{2}$, which implies that $f_{2} \leq 2 f_{0}-4$.

