Convex geometry Assignment

Problem 1. Prove that if $K \subseteq \mathbb{R}^{n}$ is closed, convex and not bounded, then for every $p \in K, K$ contains a half line starting at p.

Problem 2. Let $K \subseteq \mathbb{R}^{n}$ be a closed, convex set. Prove that if K contains a half line L starting at p, then for any $q \in K, K$ contains the half line starting at q and having the same direction as L.

Problem 3. Let $K \subseteq \mathbb{R}^{n}$ be the convex hull of the points whose every coordinate is 1 or -1 , i.e. K is an origin-symmetric cube of edge length 2. Define K as the intersection of finitely many closed half spaces.

Problem 4. Let e_{1}, \ldots, e_{n} be the standard basis vectors of \mathbb{R}^{n}. Let $K=\operatorname{conv}\left\{ \pm e_{1}, \pm e_{2}, \ldots, \pm e_{n}\right\}$. Define K as the intersection of finitely many closed half spaces.
Problem 5. Let $X \subset \mathbb{R}^{n}$ be a compact set. Let H be an open half space containing X. Prove that then there is a closed half space $H_{0} \subset H$ such that $X \subset H_{0}$. Is this statement true if X is not necessarily closed?

Problem 6. A compact, convex set $K \subset \mathbb{R}^{n}$ is called a set of constant

 width d, if for any unit vector u, the distance of the pair of supporting hyperplanes perpendicular to u is d. Prove that a compact, convex set K is of constant width d if and only if $h_{K}(u)+h_{K}(-u)=d$ for every unit vector u.Problem 7. Let T be a regular triangle of edge length $a>0$. The intersection of the three closed disks of radius a centered at the vertices of T is called a Reuleaux triangle. Prove that this set is a set of constant width a.

Problem 8. Let R be the Reuleaux triangle defined in the previous problem. Prove or disprove that the set $R+\lambda B^{2}$ is a set of constant width for every $\lambda \in \mathbb{R}$. (B^{2} is the closed unit disk centered at the origin.)
Problem 9. Let T be a regular tetrahedron in \mathbb{R}^{3} of edge length a. Let R denote the intersection of the four closed balls of radius a centered at the vertices of T. Prove that R is not a set of constant width a.

