
LECTURE 1

In this lecture we introduce the basic concepts used throughout the
semester.
We deal with only �nite dimensional Euclidean spaces. We regard

an n-dimensional Euclidean spaces as an a�ne space whose vectors are
the elements of the n-dimensional vector space Rn over the set of real
numbers. Fixing an arbitrary point of an a�ne space, the elements
of the corresponding vector space and the points of the space can be
identi�ed in a natural way, in which a point is associated to the vector
that moves the �xed point to this one. In this case the �xed point is
usually called origin. As it often appears in the literature, during the
term we identify the Euclidean space with the vector space Rn (in high
school language: we identify points and their position vectors). We
will usually denote the points/vectors of the space Rn by small Latin
letters, while its subsets by capital Latin letters.
We denote the usual inner (scalar) product of Rn by ⟨., .⟩. The length

||v|| of a vector v ∈ Rn is the quantity
√

⟨v, v⟩. For the coordinates of
the vector/point v in the standard orthonormal basis of Rn we use the
notation v = (v1, v2, . . . , vn). We denote the origin by o. The distance
of the points p = (x1, x2, . . . , xn) and q = (x′

1, x
′
2, . . . , x

′
n), denoted

by dist(p, q), is the quantity

√
n∑

i=1

(x′
i − xi)2, which coincides with the

value of ||q − p||. The interior, boundary, closure and cardinality of a
set X ⊆ Rn will be denoted by int(X), bd(X), cl(X), |X|, respectively.

De�nition 1. Let V1 and V2 be two point sets, and λ ∈ R. Then

V1 + V2 = {v1 + v2 : v1 ∈ V1, v2 ∈ V2}

is called the Minkowski sum of the two sets, and

λV1 = {λv1 : v1 ∈ V1}

the multiple of V1 by λ.

De�nition 2. Let p ∈ Rn be an arbitrary point, and L and arbitrary
(linear) subspace in the vector space Rn. Then the set p + L ⊆ Rn is
called an a�ne subspace of the space Rn.

The next remark is a straightforward consequence of the properties
of linear subspaces.
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Remark 1. Let p, q ∈ Rn and let L,L′ be linear subspaces in Rn. Then
p+ L = q + L′ is satis�ed if and only if L = L′ and q ∈ p+ L.

Proof. Assume that p + L = q + L′. Then L = (q − p) + L′ by the
de�nition of Minkowski sum, which yields, in particular, that q−p ∈ L,
from which we have q ∈ p+L. But as linear subspaces are closed with
respect to addition, q − p ∈ L implies (q − p) + L = L, from which
(q − p) + L = (q − p) + L′, yielding L = L′. On the other hand, if
q ∈ p+L, then (q − p) ∈ L =⇒ (q − p) + L = L =⇒ q +L = p+L. 2

Theorem 1. A nonempty intersection of a�ne subspaces is an a�ne
subspace.

Proof. Consider the a�ne subspaces Ai (i ∈ I), where I is an arbitrary
index set. Let A =

⋂
i∈I

Ai. Consider a point p ∈ A. Then, due to the

previous remark, for any i ∈ I we have Ai = p + Li for some suitable
linear subspace Li of Rn. The intersection of linear subspaces is a linear
subspace, and thus, L =

⋂
i∈I

Li is a linear subspace. On the other hand,

we clearly have A = p+ L, from which the assertion follows. 2

By the dimension of an a�ne subspace we mean the dimension of
the corresponding linear subspace. We call the 0-, 1-, 2-, (n − 1)-
dimensional subspaces points, lines, planes and hyperplanes. A k-
dimensional a�ne subspace may also be called a k-�at.
The next property readily follows from the de�nition of a�ne sub-

spaces and the properties of inner product.

Remark 2. If u ∈ Rn and t ∈ R arbitrary, then the set {v ∈ Rn :
⟨v, u⟩ = t} is a hyperplane. Furthermore, for any hyperplane H there
is some vector u ∈ Rn and scalar t ∈ R for which H = {v ∈ Rn :
⟨v, u⟩ = t}.

Since inner product is a continuous map from Rn to R, the previous
remark implies that for any hyperplane H decomposes the space into
two connected, open components, which we call open half spaces. The
unions of open half spaces with the bounding hyperplane we call closed
half spaces.

De�nition 3. Let G1 = p1 +L1 and G2 = p2 +L2 be a�ne subspaces.
If for any vectors v1 ∈ L1, v2 ∈ L2 we have ⟨v1, v2⟩ = 0, then we say
that G1 and G2 are perpendicular or orthogonal. Two a�ne subspaces
are parallel, if they can be written in the form p1+L and p2+L, where
L is a linear subspace.
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De�nition 4. Let X ⊂ Rn be a nonempty set. Then the a�ne hull
of X, denoted by aff(X), is de�ned as the intersection of all a�ne
subspaces containing X. The linear hull of X is de�ned as the a�ne
hull aff(X ∪ {o}). We denote the linear hull of X by lin(X). The
relative interior and relative boundary of X is de�ned as the interior
and boundary of X, respectively, with respect to the induced topology in
aff(X). We denote them by relint(X) and relbd(X), respectively.

We remark that by Theorem 1, the a�ne hull of a set is an a�ne
subspace.

De�nition 5. A point set X is called a�nely independent if for any
x ∈ X we have aff(X \ {x}) ̸= affX. The points sets that are not
a�nely independent are called a�nely dependent.

De�nition 6. Let p1, p2, . . . , pk ∈ Rn �nitely many points, and let

λ1, λ2, . . . , λk ∈ R be real numbers satisfying
k∑

i=1

λi = 1. Then the point

k∑
i=1

λipi is called an a�ne combination of the points p1, p2, . . . , pk.

Proposition 1. The a�ne hull of a set X is the set of the a�ne
combinations of all �nite point sets from X.

Proof. Let Y denote the set of all a�ne combinations of �nitely many
points in X, and let p ∈ X be an arbitrary point. Consider the
points p1 = p, p2, . . . , pk ∈ X and numbers λ1, λ2, . . . , λk ∈ R for which∑k

i=1 λi = 1 is satis�ed. According to our conditions:

k∑
i=1

λipi = p1 +
k∑

i=1

λi(pi − p1).

Thus the a�ne combination can be written as a translate of the point
p with a linear combination of the vectors pi − p. Hence, if L denotes
the linear subspace formed by the linear combinations of the vectors
q − p, q ∈ X, then Y = p + L. As it is clearly an a�ne subspace, we
have aff(X) ⊆ Y .
On the other hand, if an a�ne subspace contains X, then it can be

written in the form p+ L for some linear subspace L. The subspace L
contains all vectors of the form q − p, q ∈ X, and thus it contains
their linear combinations as well. Hence, p + L contains all a�ne
combinations of points ofX in the case that p is one of the points. Since
any k-point a�ne combination is also a (k+1)-point a�ne combination
in which one of the points is p, we have that p + L contains all a�ne
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combinations of the points of X. Thus, Y ⊆ p + L, implying Y ⊆
aff(X). 2

Corollary 1. A point set X is a�nely independent if and only if there
is no point of X that can be written as an a�ne combination of some
other points from X.

Theorem 2. Let X = {p1, p2, . . . , pk} ⊂ Rn. Then X is a�nely inde-

pendent if and only if
k∑

i=1

λipi = 0 and
k∑

i=1

λi = 0 implies λi = 0 for all

values of i.

Proof. Assume that a pont, say pk, can be written as an a�ne com-

bination of the other points; that is, pk =
k−1∑
i=1

λipi, where
k−1∑
i=1

λi = 1.

Then, setting λk = −1, we have 0 =
k∑

i=1

λipi and
k∑

i=1

λi = 0.

On the other hand, assume that for some values of the coe�cients

λi, not all of them zero, we have 0 =
k∑

i=1

λipi and
k−1∑
i=1

λi = 0. Without

loss of generality, we may assume that λk ̸= 0. For any 1 ≤ i ≤ k − 1,
let λ′

i = − λi

λk
. Then

k−1∑
i=1

λ′
i = −

k−1∑
i=1

λi

λk

= −−λk

λk

= 1,

and
k−1∑
i=1

λ′
ipi = − 1

λk

k−1∑
i=1

λipi = − 1

λk

(−λkpk) = pk,

and the point set is a�nely dependent. 2 2

Corollary 2. If X ⊂ Rn is a�nely independent, then every point of
aff(X) can be uniquely written as an a�ne combination of some points
in X.

Theorem 3. If |X| ≥ n+ 2, then X is a�nely dependent.

Proof. Assume that p1, p2, . . . , pn+2 ∈ X. Consider the vectors p2 −
p1, . . . , pn+2 − p1. Since the n-dimensional Euclidean space is an n-
dimensional vector space, the above vectors are linearly dependent, that
is one of them, say pn+2 − p1, can be written as a linear combination

of the other vectors: pn+2− p1 =
∑n+1

i=2 λi(pi− p1). Let λ1 = 1−
n+1∑
i=2

λi.
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Then clearly
n+1∑
i=1

λi = 1. On the other hand,

pn+2 = p1 +
n+1∑
i=2

λi(pi − p1) =

(
1−

n+1∑
i=2

λi

)
p1 +

n+1∑
i=2

λipi =
n+1∑
i=1

λipi,

that is, X is a�nely dependent. 2

Corollary 3. Every a�ne subspace of the space Rn is the a�ne hull
of a most n+ 1 points.

We continue with a new topic.

De�nition 7. Let p1, p2, . . . , pk ∈ Rn. If a point p can be written in

the form
k∑

i=1

λipi,
∑k

i=1 λi = 1, where λi ≥ 0 for all is, then we say that

p is a convex combination of the points p1, p2, . . . , pk.

De�nition 8. The set of the convex combinations of the points p, q ∈
Rn is called the closed segment with endpoints p and q.If p ̸= q, then
the set [p, q] \ {p, q} is called the open segment with endpoints p and q,
and it is denoted by (p, q).

De�nition 9. Let K ⊆ Rn. The set K is called convex, if for arbitrary
p, q ∈ K we have [p, q] ⊆ K.


