LECTURE 10: POLYTOPES, POLYHEDRAL SETS,
THEIR FACE STRUCTURES

We continue our investigation of convex polytopes.
Theorem 1. Every bounded polyhedral set is a convex polytope.

Proof. Every bounded polyhedral set P C R" is a compact, convex set.
Thus, by the Krein-Milman Theorem, it is sufficient to show that P
has finitely many extremal points. We prove this by induction on the
dimension n. If n = 1, then every compact, convex set (in particular,
P) is a closed segment with two extremal points, the endpoints of the
segment. Thus, for n = 1 the statement holds. Now, let P be an
n-dimensional polyhedral set, and let Hy,..., H; be the hyperplanes
bounding the closed half spaces defining P.

Let x € ext(P). Ifz € P and x ¢ H, for any 4, then, by the continuity
of linear functionals, x € int(P), implying = ¢ ext(P). Thus, we can
assume that x € H; for some value of i. By Theorem 1 of the fifth
lecture, for any closed, convex set K and any supporting hyperplane H
of K, we have ext(K)NH = ext(KNH). This yields that ext(H;NP) =
ext(P) N H;. But, by the induction hypothesis, |ext(H; N P)| < oo,
implying |ext(P)| < >, | ext(H; N P)| < oco. O

Let us recall the definition of algebraic lattice.

Definition 1. Let (A, <) be a partially ordered set. If, for any a1, as, ..., a; €
A there is a ¢ € A such that ¢ < a; for every value of i, and if d € A,

d < a; for every i implies that d < ¢, then we say that ¢ is the infimum

of ai,...,ax. One can define the supremum of aq,...,a; similarly. If

for any a,b € A, a and b has an infimum and a supremum, we say that

(A, <) is an (algebraic) lattice.

Definition 2. Assume that (A <) is a lattice with a minimal element,
denoted by 0, that is, assume that there is an element 0 € A such that
0 <a foralla € A. We say that a € A, a # 0 is an atom, if b € A,
and b < a implies b = a or b = 0. We say that (A, <) is atomic, if
for every b € A, b # 0 there is an atom a € A satisfying a < b. We
say that (A, <) is atomistic, if every element of A is the supremum of
some atoms in A.

Theorem 2. Let P C R" be an n-dimensional convex polytope, and
let F the family consisting of the faces of P (including the empty set),
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and also P. Then F is a lattice with respect to the partial order defined
by the containment relation. This lattice 1s atomic and atomistic, and
its atoms are the vertices of P.

Proof. Let F € F. Then the infimum and the supremum of () and F
is @ and F, respectively, and the infimum and the supremum of P and
F are F' and P, respectively. Now, let F; and F3 be proper faces of
P. We have seen that F' = F) N F; is a face of P. Clearly, for any
F" e Fwith F' C Fy and F' C F,, we have F/ C F', and thus, F is the
infimum of F; and F5.

We show that I} and F5 has a supremum. Indeed, if there is no
proper face of P that contains both F; and F5, then, clearly, P is the
supremum of F7 and F,. If there is a proper face containing F}UF5, then
let F' denote the intersection of all the faces satisfying this property.
As Fis a face of P, we have that F' is the supremum of F; and F5.

We have shown that F is a lattice. The minimal element of this
lattice is (), and the singleton faces, i.e. the vertices, are its atoms.
By the theorem of Straszewicz, every convex polytope has vertices.
Furthermore, as the proper faces of P are convex polytopes, every face
has vertices, yielding that the atoms are exactly the vertices of P, and
F is atomic. On the other hand, every face is the supremum of the
verties contained in the face, and thus, F is atomistic. O

Definition 3. The lattice assigned to the n-dimensional convex poly-
tope P in Theorem 2 is called the face lattice of P.



