
LECTURE 10: POLYTOPES, POLYHEDRAL SETS,

THEIR FACE STRUCTURES

We continue our investigation of convex polytopes.

Theorem 1. Every bounded polyhedral set is a convex polytope.

Proof. Every bounded polyhedral set P ⊂ Rn is a compact, convex set.
Thus, by the Krein-Milman Theorem, it is su�cient to show that P
has �nitely many extremal points. We prove this by induction on the
dimension n. If n = 1, then every compact, convex set (in particular,
P ) is a closed segment with two extremal points, the endpoints of the
segment. Thus, for n = 1 the statement holds. Now, let P be an
n-dimensional polyhedral set, and let H1, . . . , Hk be the hyperplanes
bounding the closed half spaces de�ning P .
Let x ∈ ext(P ). If x ∈ P and x /∈ Hi for any i, then, by the continuity

of linear functionals, x ∈ int(P ), implying x /∈ ext(P ). Thus, we can
assume that x ∈ Hi for some value of i. By Theorem 1 of the �fth
lecture, for any closed, convex set K and any supporting hyperplane H
ofK, we have ext(K)∩H = ext(K∩H). This yields that ext(Hi∩P ) =
ext(P ) ∩ Hi. But, by the induction hypothesis, | ext(Hi ∩ P )| < ∞,
implying | ext(P )| ≤

∑m
i=1 | ext(Hi ∩ P )| < ∞. 2

Let us recall the de�nition of algebraic lattice.

De�nition 1. Let (A,≤) be a partially ordered set. If, for any a1, a2, . . . , ak ∈
A there is a c ∈ A such that c ≤ ai for every value of i, and if d ∈ A,
d ≤ ai for every i implies that d ≤ c, then we say that c is the in�mum
of a1, . . . , ak. One can de�ne the supremum of a1, . . . , ak similarly. If
for any a, b ∈ A, a and b has an in�mum and a supremum, we say that
(A,≤) is an (algebraic) lattice.

De�nition 2. Assume that (A ≤) is a lattice with a minimal element,
denoted by 0, that is, assume that there is an element 0 ∈ A such that
0 ≤ a for all a ∈ A. We say that a ∈ A, a ̸= 0 is an atom, if b ∈ A,
and b ≤ a implies b = a or b = 0. We say that (A,≤) is atomic, if
for every b ∈ A, b ̸= 0 there is an atom a ∈ A satisfying a ≤ b. We
say that (A,≤) is atomistic, if every element of A is the supremum of
some atoms in A.

Theorem 2. Let P ⊂ Rn be an n-dimensional convex polytope, and
let F the family consisting of the faces of P (including the empty set),

1



2

and also P . Then F is a lattice with respect to the partial order de�ned
by the containment relation. This lattice is atomic and atomistic, and
its atoms are the vertices of P .

Proof. Let F ∈ F . Then the in�mum and the supremum of ∅ and F
is ∅ and F , respectively, and the in�mum and the supremum of P and
F are F and P , respectively. Now, let F1 and F2 be proper faces of
P . We have seen that F = F1 ∩ F2 is a face of P . Clearly, for any
F ′ ∈ F with F ′ ⊆ F1 and F ′ ⊆ F2, we have F

′ ⊆ F , and thus, F is the
in�mum of F1 and F2.
We show that F1 and F2 has a supremum. Indeed, if there is no

proper face of P that contains both F1 and F2, then, clearly, P is the
supremum of F1 and F2. If there is a proper face containing F1∪F2, then
let F denote the intersection of all the faces satisfying this property.
As F is a face of P , we have that F is the supremum of F1 and F2.
We have shown that F is a lattice. The minimal element of this

lattice is ∅, and the singleton faces, i.e. the vertices, are its atoms.
By the theorem of Straszewicz, every convex polytope has vertices.
Furthermore, as the proper faces of P are convex polytopes, every face
has vertices, yielding that the atoms are exactly the vertices of P , and
F is atomic. On the other hand, every face is the supremum of the
verties contained in the face, and thus, F is atomistic. 2

De�nition 3. The lattice assigned to the n-dimensional convex poly-
tope P in Theorem 2 is called the face lattice of P .


