LECTURE 10: EULER’S THEOREM FOR POLYTOPES

This week we investigate the properties of the Euler characteristics
of convex polytopes.

Lemma 1. Let P C R" be an n-dimensional (convezx) polytope. Then
x(bdP) =1+ (=1)""", and x(intP)=(-1)"

Proof. By Corollary 2 of the 8th lecture bd P is the union of the facets
of P, and thus, by Lemma 3 of the 7th lecture /[bd P] € IC(R"™) and
thus, x(bd P) exists. We prove the first equality by induction.

If n =1, then P is a closed segment, for which the assertion readily
follows. Assume that P is an n-dimensional polytope, and also that
the statement holds for (n — 1)-dimensional polytopes. We use the
notation of Lemma 1 of the Tth lecture. By the lemma,

x(bdP) =" (X(Ht Nbd P) — lim x(H,_.Nbd P)) .
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Let tym = minx, and ty., = maxx,, where x = (z1,...,2,). Then,
zeP x€EP

for every tmim < t < tmax, the set P N H; is an (n — 1)-dimensional
polytope, and thus, by the induction hypothesis. x(H; N bd P) =
X(bd(H; N P)) =1+ (=1)""2 If t =ty Or t = tyax, then H,Nbd P
is a face of the polytope, and thus, x(H; Nbd P) = 1. Furthermore, if
t > tmax OF t < tmin, then x(H; Nbd P) = 0. Summing up:

x(bdP)=1—(1+(-1)"?)+1=1+(-1)"""
Finally, by I[int P] = I[P] — I[bd P], we have
x(int P) =1— (14 (=1)"1) = (=1)".
O

Definition 1. Let P C R" be an n-dimensional convex polytope. If i =
0,1,...,n—1, let f;(P) denote the number of the i-dimensional faces
of P. Then the vector f(P) = (fo(P), fi(P),..., fa_1(P),1) € R 45
called the f-vector of P.

We remark that the last coordinate is the consequence of the con-
vention, often appearing in the literature, which regards P as an n-

dimensional face of itself.
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To prove our next theorem we need a lemma, with respect to which
we should clarify that the relative interiors of singletons (i.e. 0-dimensional
affine subspaces) are themselves.

Lemma 2. Let P C R" be an n-dimensional polytope and let x €
bd(P) be arbitrary. Then there is a unique face of P containing x in
its relative interior.

Proof. Let F be the intersection of the faces containing z. Since P has
only finitely many faces, and the intersection of finitely many faces is
a face, it follows that F' is a face of P. As x € F, therefore F'is a
proper face. We show that x € relint(F'), and that F' is the only face
of P with this property.

Assume that x € relbd(F'). Since F is a convex polytope, F' has
a face I’ containing x. But then Proposition 3 of the 8th lecture
implies that F” is a proper face of P, and thus we have found a face I’
containing x with F* ¢ F’, which contradicts the definition of F'. Thus,
x € relint(F).

For contradiction, let F’ # F be a proper face of P satisfying x €
relint(F"). Then, by the definition of F', we have F' C F’. On the other
hand, since F'is a face of P, there is a hyperplane H supporting P with
H N P = F. This hyperplane supports also the convex polytope F’ in
F, implying that F'is a proper face of F’. Thus, z € F' C relbd(F"); a
contradiction. O

Theorem 1 (Euler). Let P C R"™ be an n-dimensional convez polytope.
Then

n—1

S DAP) =1+ (1)

i=0
Proof. Observe that I[P] = > I[relintF], where the summation is
taken over all nonempty faces of P, and P itself. Applying the val-

uation y to both sides of this equation, the statement follows from the
previous lemma. O

From now on, we denote by B,.(z) the closed ball of radius r and
center x.
The main concept of this lecture is the following.

Definition 2. Let A CR" be a nonempty set. Then the polar of A is
the set
A" ={y e R": (z,y) <1 for every x € A}.
Példak.
(1) {o}* =R",
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(2) If © # o, then {z}* is the closed half space, containing o, whose
boundary is perpendicular to x and its distance from o is ﬁ
(3) For any r > 0, B,.(0)* = B1(0). This statement readily follows
from the previous example: since the intersection of the closed
half spaces, containing o, whose distance from o is % coincides
with Bi (0).
The next theorem summarizes some simple properties of polarity.

Theorem 2. (a) For any set A C R™, A # 0, we have A* =
ﬂaeA{a}*' .
(b) For any nonempty sets A; C R™, i € I, we have (J,o; Ai)
s A
(¢c) For any A C R", A # (), the set A* is a closed, convez set
containing o.
(d) If Ay C Ay CR™ are nonempty, then A C Aj.

(e) If ACR™, A#0 and A > 0, then (AA)* = ;A"

Proof. Part (a) of the theorem is a direct consequence of the definition.
Part (b) can be shown similarly, since

(Us) = N wr-n(ner)-na
i€l 2€U;er Ai i€l \z€4; i€l
To prove part (¢) consider the fact that for any A C R", A # (),
the set A* is either R™ (which is a closed, convex set containing o),
or the intersection of closed half spaces containing o. Since closed
half spaces are convex sets, and the intersection of closed, convex sets
containing o is a closed, convex set containing o, (c) follows. Part (d)
is a consequence of part (a). Finally, if A C R™, A # () and A\ > 0, then

A ={y e R": (Az,y) < 1forevery z € A} ={y € R": (x,\y) <1 for every z € A} =

1 1 1
= {Xz eR": (x,z) <1 for every z € A} = X{Z eER": (x,z) <1forevery x € A} = XA*.

O

The next two statements investigate the polars of special classes of
sets.

Proposition 1. Let K C R" be a compact, convexr set containing o
in its intertor. Then K* is a compact, convex sel containing o in its
interior.

Proof. By part (c) of Theorem 2, K* is a closed, convex set containing o.
We show that K* is bounded and it contains o in its interior. According
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to our conditions, there are constants 0 < r < R such that B,(0) C
K C Bg(0). From this, by part (d) of Theorem 2 it follows that

B, (0) = Br(o)* € K* C B,(0)" = Bu(0).
which yields the statement. O

Proposition 2. Let K CR", K # (). Then (K*)* = K holds if and
only if K is closed, convex, and o € K.

Proof. It (K*)* = K, then by part (¢) of Theorem 2, K is closed,
convex and o € K. We assume that K is closed, convex and o € K,
and show that (K*)* = K. By the definition of polar, for every z € K
and y € K*, we have (z,y) < 1, and thus, K C (K*)*. Now, let
x ¢ K be arbitrary. Since K is closed and convex, by Theorem 6 of
the 4th lecture there is a hyperplane H that strictly separates x and
K. Let H' denote the closed half space bounded by H and containing
o € K. By the example in the beginning of the lecture, the half space
HT is the polar of the set {y}, where the distance of H from o is Wll’
and y is an outer normal of H*. But then x ¢ {y}* yields (z,y) > 1,
and K C {y}* yields (z,y) < 1 for every z € K. Thus, in this case
y € K*, implying « ¢ (K*)*. This yields (K*)* C K, which implies
the assertion. O

The main result of this lecture is as follows.

Theorem 3. Let K C R" be a compact, convex set containing o in its
interior. To any proper face F' of K assign the set

F°o={ye K" :(x,y) =1 for every x € F}.

Then F° is a proper face of K*, and the map F +— F° is a bijec-
tion between the proper faces of K and K* that reverses containment
relation.

Proof. Let H = {y € R™ : (vg,y) = 1} be an arbitrary supporting
hyperplane of K satisfying F' = H N K. Since (vg,y) < 1 for every
y € K and (vg,y) = 1 for every y € F, we have vy € F°. Thus, F° # ().
Now, let zy € relint(F) and H' = {y € R" : (y,z9) = 1}. By the
definition of polar set and vy € H’, we have that H' is a supporting
hyperplane of K*, implying that F' = K* N H' is a proper face of K°.
We show that F' = F®°.

By the definition of F°, F° C H' holds, and thus, F° C F’. Now,
let yo € K*\ F°. Then, there is some z € F such that (z,y9) < 1. As
xo € relint(F'), there is a segment [z, w] C F with zo # w. Then
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can be written in the form xy =tz + (1 — t)w for some ¢ € (0,1]. But
w € F and yo € K* imply (w, yo) < 1, from which

(o, yo)t(z, yo) + (1 — t){w,yo) <1,
that is, yo ¢ F’. Thus, we have shown that F° = F’ yielding, in

particular, that F' — F° is a face of K*.
We continue the proof from here next week. O



