
LECTURE 10: EULER'S THEOREM FOR POLYTOPES

This week we investigate the properties of the Euler characteristics
of convex polytopes.

Lemma 1. Let P ⊂ Rn be an n-dimensional (convex) polytope. Then

χ(bdP ) = 1 + (−1)n−1, and χ(intP ) = (−1)n.

Proof. By Corollary 2 of the 8th lecture bdP is the union of the facets
of P , and thus, by Lemma 3 of the 7th lecture I[bdP ] ∈ K(Rn) and
thus, χ(bdP ) exists. We prove the �rst equality by induction.
If n = 1, then P is a closed segment, for which the assertion readily

follows. Assume that P is an n-dimensional polytope, and also that
the statement holds for (n − 1)-dimensional polytopes. We use the
notation of Lemma 1 of the 7th lecture. By the lemma,

χ(bdP ) =
∑
t∈R

(
χ(Ht ∩ bdP )− lim

ε→0+
χ(Ht−ε ∩ bdP )

)
.

Let tmin = min
x∈P

xn and tmax = max
x∈P

xn, where x = (x1, . . . , xn). Then,

for every tmin < t < tmax, the set P ∩ Ht is an (n − 1)-dimensional
polytope, and thus, by the induction hypothesis. χ(Ht ∩ bdP ) =
χ(bd(Ht ∩ P )) = 1 + (−1)n−2. If t = tmin or t = tmax, then Ht ∩ bdP
is a face of the polytope, and thus, χ(Ht ∩ bdP ) = 1. Furthermore, if
t > tmax or t < tmin, then χ(Ht ∩ bdP ) = 0. Summing up:

χ(bdP ) = 1− (1 + (−1)n−2) + 1 = 1 + (−1)n−1.

Finally, by I[intP ] = I[P ]− I[bdP ], we have

χ(intP ) = 1− (1 + (−1)n−1) = (−1)n.

2

De�nition 1. Let P ⊂ Rn be an n-dimensional convex polytope. If i =
0, 1, . . . , n − 1, let fi(P ) denote the number of the i-dimensional faces
of P . Then the vector f(P ) = (f0(P ), f1(P ), . . . , fn−1(P ), 1) ∈ Rn+1 is
called the f -vector of P .

We remark that the last coordinate is the consequence of the con-
vention, often appearing in the literature, which regards P as an n-
dimensional face of itself.
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To prove our next theorem we need a lemma, with respect to which
we should clarify that the relative interiors of singletons (i.e. 0-dimensional
a�ne subspaces) are themselves.

Lemma 2. Let P ⊂ Rn be an n-dimensional polytópe and let x ∈
bd(P ) be arbitrary. Then there is a unique face of P containing x in
its relative interior.

Proof. Let F be the intersection of the faces containing x. Since P has
only �nitely many faces, and the intersection of �nitely many faces is
a face, it follows that F is a face of P . As x ∈ F , therefore F is a
proper face. We show that x ∈ relint(F ), and that F is the only face
of P with this property.
Assume that x ∈ relbd(F ). Since F is a convex polytope, F has

a face F ′ containing x. But then Proposition 3 of the 8th lecture
implies that F ′ is a proper face of P , and thus we have found a face F ′

containing x with F ̸⊆ F ′, which contradicts the de�nition of F . Thus,
x ∈ relint(F ).
For contradiction, let F ′ ̸= F be a proper face of P satisfying x ∈

relint(F ′). Then, by the de�nition of F , we have F ⊂ F ′. On the other
hand, since F is a face of P , there is a hyperplane H supporting P with
H ∩ P = F . This hyperplane supports also the convex polytope F ′ in
F , implying that F is a proper face of F ′. Thus, x ∈ F ⊂ relbd(F ′); a
contradiction. 2

Theorem 1 (Euler). Let P ⊂ Rn be an n-dimensional convex polytope.
Then

n−1∑
i=0

(−1)ifi(P ) = 1 + (−1)n−1.

Proof. Observe that I[P ] =
∑

I[relintF ], where the summation is
taken over all nonempty faces of P , and P itself. Applying the val-
uation χ to both sides of this equation, the statement follows from the
previous lemma. 2

From now on, we denote by Br(x) the closed ball of radius r and
center x.
The main concept of this lecture is the following.

De�nition 2. Let A ⊆ Rn be a nonempty set. Then the polar of A is
the set

A∗ = {y ∈ Rn : ⟨x, y⟩ ≤ 1 for every x ∈ A}.

Példák.

(1) {o}∗ = Rn,
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(2) If x ̸= o, then {x}∗ is the closed half space, containing o, whose
boundary is perpendicular to x and its distance from o is 1

||x|| .

(3) For any r > 0, Br(o)
∗ = B 1

r
(o). This statement readily follows

from the previous example, since the intersection of the closed
half spaces, containing o, whose distance from o is 1

r
coincides

with B 1
r
(o).

The next theorem summarizes some simple properties of polarity.

Theorem 2. (a) For any set A ⊆ Rn, A ̸= ∅, we have A∗ =⋂
a∈A{a}∗.

(b) For any nonempty sets Ai ⊆ Rn, i ∈ I, we have
(⋃

i∈I Ai

)∗
=⋂

i∈I A
∗
i .

(c) For any A ⊆ Rn, A ̸= ∅, the set A∗ is a closed, convex set
containing o.

(d) If A1 ⊆ A2 ⊆ Rn are nonempty, then A∗
2 ⊆ A∗

1.
(e) If A ⊆ Rn, A ̸= ∅ and λ > 0, then (λA)∗ = 1

λ
A∗.

Proof. Part (a) of the theorem is a direct consequence of the de�nition.
Part (b) can be shown similarly, since(⋃

i∈I

Ai

)∗

=
⋂

x∈
⋃

i∈I Ai

{x}∗ =
⋂
i∈I

(⋂
x∈Ai

{x}∗
)

=
⋂
i∈I

A∗
i .

To prove part (c) consider the fact that for any A ⊆ Rn, A ̸= ∅,
the set A∗ is either Rn (which is a closed, convex set containing o),
or the intersection of closed half spaces containing o. Since closed
half spaces are convex sets, and the intersection of closed, convex sets
containing o is a closed, convex set containing o, (c) follows. Part (d)
is a consequence of part (a). Finally, if A ⊆ Rn, A ̸= ∅ and λ > 0, then

(λA)∗ = {y ∈ Rn : ⟨λx, y⟩ ≤ 1 for every x ∈ A} = {y ∈ Rn : ⟨x, λy⟩ ≤ 1 for every x ∈ A} =

=

{
1

λ
z ∈ Rn : ⟨x, z⟩ ≤ 1 for every x ∈ A

}
=

1

λ
{z ∈ Rn : ⟨x, z⟩ ≤ 1 for every x ∈ A} =

1

λ
A∗.

2

The next two statements investigate the polars of special classes of
sets.

Proposition 1. Let K ⊂ Rn be a compact, convex set containing o
in its interior. Then K∗ is a compact, convex set containing o in its
interior.

Proof. By part (c) of Theorem 2,K∗ is a closed, convex set containing o.
We show thatK∗ is bounded and it contains o in its interior. According
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to our conditions, there are constants 0 < r < R such that Br(o) ⊆
K ⊆ BR(o). From this, by part (d) of Theorem 2 it follows that

B 1
R
(o) = BR(o)

∗ ⊆ K∗ ⊆ Br(o)
∗ = B 1

r
(o),

which yields the statement. 2

Proposition 2. Let K ⊆ Rn, K ̸= ∅. Then (K∗)∗ = K holds if and
only if K is closed, convex, and o ∈ K.

Proof. If (K∗)∗ = K, then by part (c) of Theorem 2, K is closed,
convex and o ∈ K. We assume that K is closed, convex and o ∈ K,
and show that (K∗)∗ = K. By the de�nition of polar, for every x ∈ K
and y ∈ K∗, we have ⟨x, y⟩ ≤ 1, and thus, K ⊆ (K∗)∗. Now, let
x /∈ K be arbitrary. Since K is closed and convex, by Theorem 6 of
the 4th lecture there is a hyperplane H that strictly separates x and
K. Let H+ denote the closed half space bounded by H and containing
o ∈ K. By the example in the beginning of the lecture, the half space
H+ is the polar of the set {y}, where the distance of H from o is 1

|y| ,

and y is an outer normal of H+. But then x /∈ {y}∗ yields ⟨x, y⟩ > 1,
and K ⊂ {y}∗ yields ⟨z, y⟩ ≤ 1 for every z ∈ K. Thus, in this case
y ∈ K∗, implying x /∈ (K∗)∗. This yields (K∗)∗ ⊆ K, which implies
the assertion. 2

The main result of this lecture is as follows.

Theorem 3. Let K ⊂ Rn be a compact, convex set containing o in its
interior. To any proper face F of K assign the set

F ◦ = {y ∈ K∗ : ⟨x, y⟩ = 1 for every x ∈ F}.

Then F ◦ is a proper face of K∗, and the map F 7→ F ◦ is a bijec-
tion between the proper faces of K and K∗ that reverses containment
relation.

Proof. Let H = {y ∈ Rn : ⟨v0, y⟩ = 1} be an arbitrary supporting
hyperplane of K satisfying F = H ∩ K. Since ⟨v0, y⟩ ≤ 1 for every
y ∈ K and ⟨v0, y⟩ = 1 for every y ∈ F , we have v0 ∈ F ◦. Thus, F ◦ ̸= ∅.
Now, let x0 ∈ relint(F ) and H ′ = {y ∈ Rn : ⟨y, x0⟩ = 1}. By the
de�nition of polar set and v0 ∈ H ′, we have that H ′ is a supporting
hyperplane of K∗, implying that F ′ = K∗ ∩H ′ is a proper face of K◦.
We show that F ′ = F ◦.
By the de�nition of F ◦, F ◦ ⊂ H ′ holds, and thus, F ◦ ⊆ F ′. Now,

let y0 ∈ K∗ \ F ◦. Then, there is some z ∈ F such that ⟨z, y0⟩ < 1. As
x0 ∈ relint(F ), there is a segment [z, w] ⊆ F with x0 ̸= w. Then x0
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can be written in the form x0 = tz + (1− t)w for some t ∈ (0, 1]. But
w ∈ F and y0 ∈ K∗ imply ⟨w, y0⟩ ≤ 1, from which

⟨x0, y0⟩t⟨z, y0⟩+ (1− t)⟨w, y0⟩ < 1,

that is, y0 /∈ F ′. Thus, we have shown that F ◦ = F ′ yielding, in
particular, that F 7→ F ◦ is a face of K∗.
We continue the proof from here next week. 2


