LECTURE 10: EULER'S THEOREM FOR POLYTOPES

This week we investigate the properties of the Euler characteristics of convex polytopes.

Lemma 1. Let $P \subset \mathbb{R}^{n}$ be an n-dimensional (convex) polytope. Then

$$
\chi(\operatorname{bd} P)=1+(-1)^{n-1}, \quad \text { and } \quad \chi(\operatorname{int} P)=(-1)^{n} .
$$

Proof. By Corollary 2 of the 8th lecture bd P is the union of the facets of P, and thus, by Lemma 3 of the 7 th lecture $I[\operatorname{bd} P] \in \mathcal{K}\left(\mathbb{R}^{n}\right)$ and thus, $\chi(\mathrm{bd} P)$ exists. We prove the first equality by induction.

If $n=1$, then P is a closed segment, for which the assertion readily follows. Assume that P is an n-dimensional polytope, and also that the statement holds for $(n-1)$-dimensional polytopes. We use the notation of Lemma 1 of the 7th lecture. By the lemma,

$$
\chi(\operatorname{bd} P)=\sum_{t \in \mathbb{R}}\left(\chi\left(H_{t} \cap \mathrm{bd} P\right)-\lim _{\varepsilon \rightarrow 0^{+}} \chi\left(H_{t-\varepsilon} \cap \operatorname{bd} P\right)\right) .
$$

Let $t_{\text {min }}=\min _{x \in P} x_{n}$ and $t_{\max }=\max _{x \in P} x_{n}$, where $x=\left(x_{1}, \ldots, x_{n}\right)$. Then, for every $t_{\min }<t<t_{\max }$, the set $P \cap H_{t}$ is an $(n-1)$-dimensional polytope, and thus, by the induction hypothesis. $\chi\left(H_{t} \cap \operatorname{bd} P\right)=$ $\chi\left(\operatorname{bd}\left(H_{t} \cap P\right)\right)=1+(-1)^{n-2}$. If $t=t_{\min }$ or $t=t_{\max }$, then $H_{t} \cap \operatorname{bd} P$ is a face of the polytope, and thus, $\chi\left(H_{t} \cap \mathrm{bd} P\right)=1$. Furthermore, if $t>t_{\text {max }}$ or $t<t_{\text {min }}$, then $\chi\left(H_{t} \cap \mathrm{bd} P\right)=0$. Summing up:

$$
\chi(\operatorname{bd} P)=1-\left(1+(-1)^{n-2}\right)+1=1+(-1)^{n-1} .
$$

Finally, by $I[\operatorname{int} P]=I[P]-I[\operatorname{bd} P]$, we have

$$
\chi(\operatorname{int} P)=1-\left(1+(-1)^{n-1}\right)=(-1)^{n} .
$$

Definition 1. Let $P \subset \mathbb{R}^{n}$ be an n-dimensional convex polytope. If $i=$ $0,1, \ldots, n-1$, let $f_{i}(P)$ denote the number of the i-dimensional faces of P. Then the vector $f(P)=\left(f_{0}(P), f_{1}(P), \ldots, f_{n-1}(P), 1\right) \in \mathbb{R}^{n+1}$ is called the f-vector of P.

We remark that the last coordinate is the consequence of the convention, often appearing in the literature, which regards P as an n dimensional face of itself.

To prove our next theorem we need a lemma, with respect to which we should clarify that the relative interiors of singletons (i.e. 0-dimensional affine subspaces) are themselves.

Lemma 2. Let $P \subset \mathbb{R}^{n}$ be an n-dimensional polytópe and let $x \in$ $\mathrm{bd}(P)$ be arbitrary. Then there is a unique face of P containing x in its relative interior.

Proof. Let F be the intersection of the faces containing x. Since P has only finitely many faces, and the intersection of finitely many faces is a face, it follows that F is a face of P. As $x \in F$, therefore F is a proper face. We show that $x \in \operatorname{relint}(F)$, and that F is the only face of P with this property.

Assume that $x \in \operatorname{relbd}(F)$. Since F is a convex polytope, F has a face F^{\prime} containing x. But then Proposition 3 of the 8th lecture implies that F^{\prime} is a proper face of P, and thus we have found a face F^{\prime} containing x with $F \nsubseteq F^{\prime}$, which contradicts the definition of F. Thus, $x \in \operatorname{relint}(F)$.

For contradiction, let $F^{\prime} \neq F$ be a proper face of P satisfying $x \in$ relint $\left(F^{\prime}\right)$. Then, by the definition of F, we have $F \subset F^{\prime}$. On the other hand, since F is a face of P, there is a hyperplane H supporting P with $H \cap P=F$. This hyperplane supports also the convex polytope F^{\prime} in F, implying that F is a proper face of F^{\prime}. Thus, $x \in F \subset \operatorname{relbd}\left(F^{\prime}\right)$; a contradiction.

Theorem 1 (Euler). Let $P \subset \mathbb{R}^{n}$ be an n-dimensional convex polytope. Then

$$
\sum_{i=0}^{n-1}(-1)^{i} f_{i}(P)=1+(-1)^{n-1}
$$

Proof. Observe that $I[P]=\sum I[\operatorname{relint} F]$, where the summation is taken over all nonempty faces of P, and P itself. Applying the valuation χ to both sides of this equation, the statement follows from the previous lemma.

From now on, we denote by $B_{r}(x)$ the closed ball of radius r and center x.

The main concept of this lecture is the following.
Definition 2. Let $A \subseteq \mathbb{R}^{n}$ be a nonempty set. Then the polar of A is the set

$$
A^{*}=\left\{y \in \mathbb{R}^{n}:\langle x, y\rangle \leq 1 \text { for every } x \in A\right\} .
$$

Példák.
(1) $\{o\}^{*}=\mathbb{R}^{n}$,
(2) If $x \neq o$, then $\{x\}^{*}$ is the closed half space, containing o, whose boundary is perpendicular to x and its distance from o is $\frac{1}{\|x\|}$.
(3) For any $r>0, B_{r}(o)^{*}=B_{\frac{1}{r}}(o)$. This statement readily follows from the previous example, since the intersection of the closed half spaces, containing o, whose distance from o is $\frac{1}{r}$ coincides with $B_{\frac{1}{r}}(o)$.
The next theorem summarizes some simple properties of polarity.
Theorem 2. (a) For any set $A \subseteq \mathbb{R}^{n}, A \neq \emptyset$, we have $A^{*}=$ $\bigcap_{a \in A}\{a\}^{*}$.
(b) For any nonempty sets $A_{i} \subseteq \mathbb{R}^{n}, i \in I$, we have $\left(\bigcup_{i \in I} A_{i}\right)^{*}=$ $\bigcap_{i \in I} A_{i}^{*}$.
(c) For any $A \subseteq \mathbb{R}^{n}$, $A \neq \emptyset$, the set A^{*} is a closed, convex set containing o.
(d) If $A_{1} \subseteq A_{2} \subseteq \mathbb{R}^{n}$ are nonempty, then $A_{2}^{*} \subseteq A_{1}^{*}$.
(e) If $A \subseteq \mathbb{R}^{n}, A \neq \emptyset$ and $\lambda>0$, then $(\lambda A)^{*}=\frac{1}{\lambda} A^{*}$.

Proof. Part (a) of the theorem is a direct consequence of the definition. Part (b) can be shown similarly, since

$$
\left(\bigcup_{i \in I} A_{i}\right)^{*}=\bigcap_{x \in \bigcup_{i \in I} A_{i}}\{x\}^{*}=\bigcap_{i \in I}\left(\bigcap_{x \in A_{i}}\{x\}^{*}\right)=\bigcap_{i \in I} A_{i}^{*}
$$

To prove part (c) consider the fact that for any $A \subseteq \mathbb{R}^{n}, A \neq \emptyset$, the set A^{*} is either \mathbb{R}^{n} (which is a closed, convex set containing o), or the intersection of closed half spaces containing o. Since closed half spaces are convex sets, and the intersection of closed, convex sets containing o is a closed, convex set containing o, (c) follows. Part (d) is a consequence of part (a). Finally, if $A \subseteq \mathbb{R}^{n}, A \neq \emptyset$ and $\lambda>0$, then $(\lambda A)^{*}=\left\{y \in \mathbb{R}^{n}:\langle\lambda x, y\rangle \leq 1\right.$ for every $\left.x \in A\right\}=\left\{y \in \mathbb{R}^{n}:\langle x, \lambda y\rangle \leq 1\right.$ for every $\left.x \in A\right\}=$ $=\left\{\frac{1}{\lambda} z \in \mathbb{R}^{n}:\langle x, z\rangle \leq 1\right.$ for every $\left.x \in A\right\}=\frac{1}{\lambda}\left\{z \in \mathbb{R}^{n}:\langle x, z\rangle \leq 1\right.$ for every $\left.x \in A\right\}=\frac{1}{\lambda} A^{*}$.

The next two statements investigate the polars of special classes of sets.

Proposition 1. Let $K \subset \mathbb{R}^{n}$ be a compact, convex set containing o in its interior. Then K^{*} is a compact, convex set containing o in its interior.

Proof. By part (c) of Theorem 2, K^{*} is a closed, convex set containing o. We show that K^{*} is bounded and it contains o in its interior. According
to our conditions, there are constants $0<r<R$ such that $B_{r}(o) \subseteq$ $K \subseteq B_{R}(o)$. From this, by part (d) of Theorem 2 it follows that

$$
B_{\frac{1}{R}}(o)=B_{R}(o)^{*} \subseteq K^{*} \subseteq B_{r}(o)^{*}=B_{\frac{1}{r}}(o)
$$

which yields the statement.
Proposition 2. Let $K \subseteq \mathbb{R}^{n}, K \neq \emptyset$. Then $\left(K^{*}\right)^{*}=K$ holds if and only if K is closed, convex, and $o \in K$.

Proof. If $\left(K^{*}\right)^{*}=K$, then by part (c) of Theorem 2, K is closed, convex and $o \in K$. We assume that K is closed, convex and $o \in K$, and show that $\left(K^{*}\right)^{*}=K$. By the definition of polar, for every $x \in K$ and $y \in K^{*}$, we have $\langle x, y\rangle \leq 1$, and thus, $K \subseteq\left(K^{*}\right)^{*}$. Now, let $x \notin K$ be arbitrary. Since K is closed and convex, by Theorem 6 of the 4th lecture there is a hyperplane H that strictly separates x and K. Let H^{+}denote the closed half space bounded by H and containing $o \in K$. By the example in the beginning of the lecture, the half space H^{+}is the polar of the set $\{y\}$, where the distance of H from o is $\frac{1}{|y|}$, and y is an outer normal of H^{+}. But then $x \notin\{y\}^{*}$ yields $\langle x, y\rangle>1$, and $K \subset\{y\}^{*}$ yields $\langle z, y\rangle \leq 1$ for every $z \in K$. Thus, in this case $y \in K^{*}$, implying $x \notin\left(K^{*}\right)^{*}$. This yields $\left(K^{*}\right)^{*} \subseteq K$, which implies the assertion.

The main result of this lecture is as follows.
Theorem 3. Let $K \subset \mathbb{R}^{n}$ be a compact, convex set containing o in its interior. To any proper face F of K assign the set

$$
F^{\circ}=\left\{y \in K^{*}:\langle x, y\rangle=1 \text { for every } x \in F\right\} .
$$

Then F° is a proper face of K^{*}, and the map $F \mapsto F^{\circ}$ is a bijection between the proper faces of K and K^{*} that reverses containment relation.

Proof. Let $H=\left\{y \in \mathbb{R}^{n}:\left\langle v_{0}, y\right\rangle=1\right\}$ be an arbitrary supporting hyperplane of K satisfying $F=H \cap K$. Since $\left\langle v_{0}, y\right\rangle \leq 1$ for every $y \in K$ and $\left\langle v_{0}, y\right\rangle=1$ for every $y \in F$, we have $v_{0} \in F^{\circ}$. Thus, $F^{\circ} \neq \emptyset$. Now, let $x_{0} \in \operatorname{relint}(F)$ and $H^{\prime}=\left\{y \in \mathbb{R}^{n}:\left\langle y, x_{0}\right\rangle=1\right\}$. By the definition of polar set and $v_{0} \in H^{\prime}$, we have that H^{\prime} is a supporting hyperplane of K^{*}, implying that $F^{\prime}=K^{*} \cap H^{\prime}$ is a proper face of K°. We show that $F^{\prime}=F^{\circ}$.

By the definition of $F^{\circ}, F^{\circ} \subset H^{\prime}$ holds, and thus, $F^{\circ} \subseteq F^{\prime}$. Now, let $y_{0} \in K^{*} \backslash F^{\circ}$. Then, there is some $z \in F$ such that $\left\langle z, y_{0}\right\rangle<1$. As $x_{0} \in \operatorname{relint}(F)$, there is a segment $[z, w] \subseteq F$ with $x_{0} \neq w$. Then x_{0}
can be written in the form $x_{0}=t z+(1-t) w$ for some $t \in(0,1]$. But $w \in F$ and $y_{0} \in K^{*}$ imply $\left\langle w, y_{0}\right\rangle \leq 1$, from which

$$
\left\langle x_{0}, y_{0}\right\rangle t\left\langle z, y_{0}\right\rangle+(1-t)\left\langle w, y_{0}\right\rangle<1
$$

that is, $y_{0} \notin F^{\prime}$. Thus, we have shown that $F^{\circ}=F^{\prime}$ yielding, in particular, that $F \mapsto F^{\circ}$ is a face of K^{*}.

We continue the proof from here next week.

