
LECTURE 12: POLARITY CONTINUED;

INTRODUCTION TO HAUSDORFF DISTANCE

We �nish the proof of the following theorem. For completeness, we
include here the �rst part of the proof.

Theorem 1. Let K ⊂ Rn be a compact, convex set containing o in its

interior. To any proper face F of K assign the set

F ◦ = {y ∈ K∗ : ⟨x, y⟩ = 1 for every x ∈ F}.
Then F ◦ is a proper face of K∗, and the map F 7→ F ◦ is a bijec-

tion between the proper faces of K and K∗ that reverses containment

relation.

Proof. Let H = {y ∈ Rn : ⟨v0, y⟩ = 1} be an arbitrary supporting
hyperplane of K satisfying F = H ∩ K. Since ⟨v0, y⟩ ≤ 1 for every
y ∈ K and ⟨v0, y⟩ = 1 for every y ∈ F , we have v0 ∈ F ◦. Thus, F ◦ ̸= ∅.
Now, let x0 ∈ relint(F ) and H ′ = {y ∈ Rn : ⟨y, x0⟩ = 1}. By the
de�nition of polar set and v0 ∈ H ′, we have that H ′ is a supporting
hyperplane of K∗, implying that F ′ = K∗ ∩H ′ is a proper face of K◦.
We show that F ′ = F ◦.
By the de�nition of F ◦, F ◦ ⊂ H ′ holds, and thus, F ◦ ⊆ F ′. Now,

let y0 ∈ K∗ \ F ◦. Then, there is some z ∈ F such that ⟨z, y0⟩ < 1. As
x0 ∈ relint(F ), there is a segment [z, w] ⊆ F with x0 ̸= w. Then x0

can be written in the form x0 = tz + (1− t)w for some t ∈ (0, 1]. But
w ∈ F and y0 ∈ K∗ imply ⟨w, y0⟩ ≤ 1, from which

⟨x0, y0⟩t⟨z, y0⟩+ (1− t)⟨w, y0⟩ < 1,

that is, y0 /∈ F ′. Thus, we have shown that F ◦ = F ′ yielding, in
particular, that F 7→ F ◦ is a face of K∗.
Now we prove that for any proper face F , we have (F ◦)◦ = F , which

will imply that the map F 7→ F ◦ is injective. But since (K∗)∗ = K; that
is, applying this property for K∗ we obtain that the map is bijective.
By de�nition,

(F ◦)◦ = {y ∈ (K∗)∗ = K : ⟨x, y⟩ = 1 for every x ∈ F ◦}.
Thus, F ⊆ (F ◦)◦. Let us consider the supporting hyperplane H =
{y ∈ Rn : ⟨v0, y⟩ = 1} mentioned in the beginning of the proof. For
this hyperplane H ∩ K = F is satis�ed. During the proof we have
shown that v0 ∈ F ◦. Hence, if y ∈ (F ◦)◦, then ⟨y, v0⟩ = 1, but by the
condition H ∩K = F we have y ∈ F ; that is, (F ◦)◦ ⊆ F .
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We have shown that the map F 7→ F ◦ reverses the containment
relation. But this property is a straightforward consequence of the
de�nition of F ◦. 2

De�nition 1. Let P,Q ⊂ Rn be n-dimensional convex polytopes. We

say that Q is a dual of P , if there is a bijection between the proper

faces of Q and P that reverses containment.

Problem 1. Find dual pairs of polytopes P,Q.

We remark that extending the above map to ∅ and the polytope
itself, the duality of P and Q corresponds to the fact that the face
lattices of P and Q are duals (cf. De�nition 5 in the 8th lecture).

Proposition 1. Let P ⊆ Rn be an arbitrary convex polytope. Then P
has a dual polytope.

Proof. Since translation and the dimension of the ambient space do not
in�uence the existence of a dual polytope, we may assume that P is
n-dimensional, and it contains o in its interior. But then P ∗ is a dual
of P . 2

The following statement, which we present without proof, is often
used in convex geometry. Before reading it, it is worth recalling that
every compact set is Lebesgue measurable, and hence, it has a volume.

Proposition 2. Let K be a compact, convex set containing o in its

interior, and let L : Rn → Rn be a nondegenerate linear transforma-

tion.Then the quantity V (L(K))V (L(K)∗) is independent of the choice

of L, where the symbol V (·) denotes n-dimensional volume.

De�nition 2. If K ⊆ Rn is a compact, convex set containing o in its

interior, then the quantity V (K)V (K∗) is called the volume product
or Mahler volume of K.

Theorem 2 (Blascke-Santaló). For any compact, convex set K with

K = −K and o ∈ intK, we have

V (K)V (K∗) ≤ κ2
n,

where κn denotes the volume of the n-dimensional unit ball.

The next conjecture is one of the most fundamental conjecture in
convex geometry.

Conjecture 1 (Mahler). For any compact, convex set K with K = −K
and o ∈ intK, we have

V (K)V (K∗) ≥ V (C)V (C∗),

where C is a cube centered at o.
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Our next topic is Hausdor� distance. Let us recall the concepts of
Minkowski sum and support function.
If A,B ⊆ Rn are nonempty sets, then their Minkowski sum is A+B =

{a + b : a ∈ A, b ∈ B}. We have seen that if A,B are compact,
convex sets, then A+B is also compact and convex. We have de�ned
the support function of a bounded set K as h : Rn → R, hK(x) =
sup{⟨x, y⟩ : y ∈ K}, and we have shown that if o ∈ K, then hK is
convex.
In the lecture we denote the family of compact, convex nonempty

sets in Rn by Kn. The main de�nition discussed in the lecture is the
following.

De�nition 3. Let K,L ∈ Kn be compact sets. Then the Hausdor�
distance of K and L is

dH(K,L) = inf{r ≥ 0 : K ⊆ L+Br(o) és L ⊆ K +Br(o)}.

We remark that the above de�nition can be extended for bounded
sets in general.

Proposition 3. For any K,L ∈ Kn, we have dH(K,L) = sup{|hK(x)−
hL(x)| : x ∈ Rn, ||x|| = 1}.

Proof. By Proposition 2 in the 4th lecture, hK+L = hK + hL. On
the other hand, it can also be shown that for the above sets K ⊆ L is
satis�ed if and only if hK(x) ≤ hL(x) is satis�ed for all x ∈ Rn. Indeed,
by de�nition, K ⊆ L implies the inequality for their support functions.
Now, assume that K ̸⊆ L. Then there is a point x ∈ K \L. Since L is
compact and convex, x and L can be strictly separated by a hyperplane;
that is, there is a unit vector u ∈ Rn and real number α ∈ R such that
⟨x, u⟩ > α, and ⟨y, u⟩ < α for any y ∈ L. But then sup{⟨y, u⟩ :
y ∈ K} > sup{⟨y, u⟩ : y ∈ L}, implying hK(u) > hL(u). Now, the
statement readily follows by rephrasing the containment relations in
the de�nition of Hausdor� distance. 2

Proposition 4. If K,L,M ∈ Kn, then

• dH(K,L) ≥ 0, with equality if and only if K = L.
• dH(K,L) = dH(L,K).
• dH(K,L) + dH(L,M) ≥ dH(K,M).

Proof. The inequality dH(K,L) ≥ 0 and the equality dH(K,K) = 0
follows from the de�nition. On the other hand, if dH(K,L) = 0, then
K ⊆ L and L ⊆ K, implyingK = L. The de�nition does not disinguish
the order of K and L, and thus, dH(K,L) = dH(L,K). Finally, if
K ⊆ L+Br1(o) and L ⊆ M +Br2(o), then Br1(o)+Br2(o) = Br1+r2(o)
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yields K ⊆ M + Br1+r2(o), and M ⊆ L + Br2(o) and L ⊆ K + Br1(o)
implies similarly that M ⊆ K + Br1+r2(o). From this we obtain the
triangle inequality dH(K,L) + dH(L,M) ≥ dH(K,M). 2

Corollary 1. The family Kn, equipped with Hausdor� distance, is a

metric space.

Let us recall that a metric space is called a complete metric space

if every Cauchy sequence in the space is convergent. This property is
investigated in the next theorem.

Theorem 3. The family Kn, equipped with Hausdor� distance, is a

complete metric space.

Proof. Let Ki ∈ Kn, i = 1, 2, . . . be a Cauchy sequence of nonempty,
compact, convex sets; i.e. assume that for every ε > 0 there is some
m0 ∈ Z+ such that if m1,m2 > m0, then dH(Km1 , Km2) < ε. We show
that then there is some K ∈ Kn such that Km → K with respect to
the topology induced by Hausdor� distance.
For every positive integer i, let Bi = cl(Ki ∪ Ki+1 ∪ . . .). By the

properties of Cauchy sequences, Bi is a nonempty, bounded and closed
set in Rn, implying that it is compact, and Bi+1 ⊆ Bi for every i. Let
B = ∩∞

i=1Bi. Since the intersection of arbitrarily many closed sets is
closed, B is compact. We show that B is not empty. Indeed, if B = ∅,
then the complements of the sets Bi with respect to the compact set
B1 form an open cover of B1. But then we can choose a �nite open
subcover of B1, i.e. there are �nitely many Bis whose intersection is
∅, from which, as the sets are nested, it follows that Bi = ∅ for some
value of i, which contradicts the de�nition of Bi. We have obtained
that B is a nonempty, compact set.
Let ε > 0 be arbitrary. We show that there is an index m ∈ Z+ such

that for every i > m, we have Bi ⊆ int(B + Bε(o)). By contradiction,
suppose that it is not true. Then there is a sequence ij of indices such
that for every value of j, Bij ̸⊆ int(B+Bε(o)). Let Cij = Bij \ int(B+
Bε(o)). By our conditions, the sets Cij are nonempty, nested, compact
sets, which implies, as in the previous paragraph, C = ∩∞

i=1Cij is a
nonempty, compact set. But as the sets Bi are nested, C ⊆ Bij for
every value of j, implying that C ⊆ Bi for every value of i. On the
other hand, by their constructions, C and B are disjoint, which is a
contradiction. Thus, for a suitable m ∈ Z+, Bi ⊆ int(B + Bε(o)) for
all i > m. But from this it follows that Ki ⊆ B +Bε(o) for all i > m.
Since {Ki} is a Cauchy sequence, there is an index k such that

dH(Ki, Kj) < ε if i, j > k. Thus, if i > k is arbitrary, then
⋃∞

j=i Ki ⊆
Ki + Bε(o), implying B ⊆ Bi ⊆ Ki + Bε(o). This yields that if



5

i > max{k,m}, then dH(B,Ki) ≤ ε, and thus, the limit set of {Ki} is
B.
We need to show that B is convex. Let p, q ∈ B be arbitrary, and

assume that for some t ∈ (0, 1), x = tp + (1 − t)q /∈ B. Then, by the
compactness of B, there is a value δ > 0 such that Bδ(x)∩B = ∅. Since
the limit set of {Ki} is B, there is an index i such thatKi ⊆ B+Bδ/2(o)

and some points p′, q′ ∈ Ki such that ||p − p′||, ||q − q′|| ≤ δ
2
. Let

x′ = tp′+(1− t)q′ ∈ Ki, which, by the triangle inequality, implies that
||x−x′|| ≤ t||p− p′||+(1− t)||q− q′|| ≤ δ

2
, and thus, x ∈ Bδ/2(x

′). But
from this we obtain x ∈ Ki + Bδ/2(o) ⊆ B + Bδ(o), or in other words,
Bδ(x) ∩B ̸= ∅, which is in contradiction with the choice of δ. 2

De�nition 4. Let F be a nonempty family of nonempty sets in Rn. If

there is some r > 0 such that F ⊆ Br(o) for every F ∈ F , then we say

that F is uniformly bounded.

The next theorem is a generalization of the Bolzano-Weierstrass the-
orem for bounded sequences.

Theorem 4 (Blaschke's Selection Theorem). Let F ⊆ Kn be a uni-

formly bounded, in�nite family. Then F contains a sequence converging

to an element of Kn.

Proof. We show that F contains a Cauchy sequence. Let C be a cube
in Rn that contains all elements of F , and let the edge length of C be r.
Let i be a positive integer, and dissect C with hyperplanes parallel to
its facets into smaller (closed) cubes of edge length r

2i
. To any element

K of F , assign the union of the small cubes that intersect K. We call
this set the ith minimal cover.
Since there are only �nitely many possible �rst minimal covers, there

is a union F1 of small cubes which is the �rst minimal cover of in�nitely
many elements of F . Legyen F1 ⊂ F be the subset of F whose �rst
minimal cover is F1. As |F1| = ∞ and there are only �nitely many
possible second minimal covers, there is a union F2 of small cubes
that is the second minimal cover of in�nitely many elements of F1.
Continuing this process, we obtained a sequence of nested subfamilies
F ⊇ F1 ⊇ F2 ⊇ . . . ⊇ Fi ⊇ . . . whith the property that every element
of Fi has the same ith minimal cover Fi.
Let Ki ∈ Fi, and consider the sequence {Ki}. According to the

construction, for any Ki ∈ Fi, Kj ∈ Fj, i < j, the ith minimal cover
of Ki and Kj i coincides. Since the diameters of the cubes forming

an ith minimal cover is r
√
n

2i
, therefore then dH(Ki, Kj) ≤ r

√
n

2i
. But

this implies that {Ki} is a Cauchy sequence, and thus, by the previous
theorem, it is convergent. 2
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According to the next theorem, the family of convex polytopes is an
everywhere dense subfamily in Kn.

Theorem 5. Let K ∈ Kn be arbitrary. Then there is a sequence of

convex polytopes {Pk} that converges to K with respect to Hausdor�

distance.

Proof. Without loss of generality, assume that dim(K) = n. To prove
the statement, it is su�cient to show that for every ε > 0 there is some
convex polytope P satisfying P ⊆ K ⊆ P + Bε(o), since choosing a
polytope Pk for every positive integer k with the property that Pk ⊆
K ⊆ Pk +B1/k(o), the sequence {Pk} satis�es the required conditions.
Since K is compact, there are points x1, . . . , xm ∈ K such that the

open balls intBε(xi) coverK. Let P = conv{x1, . . . , xm}. Then, clearly
P ⊆ K. But K ⊆

⋃m
i=1 int(Bε)(xi) = {x1, . . . , xm} + intBε(o) ⊆

P +Bε(o), from which the assertion follows. 2


