LECTURE 2: CONVEX COMBINATION, CONVEX HULL

In this lecture we continue the investigation of convex sets.
Remark 1. The intersection of arbitrarily many convex sets is convex.
Theorem 1. Let $K \subseteq \mathbb{R}^{n}$ be a closed, convex set. Then K coincides with the intersection of the closed half spaces containing K.

Proof. Let K^{\prime} denote the intersection of the closed hald spaces containing X. Since the intersection of closed, convex sets is closed and convex, we have $K \subseteq K^{\prime}$. We need to show that $K^{\prime} \subseteq K$.

Suppose for contradiction that there is some point $p \in K^{\prime} \backslash K$. Consider the function $q \mapsto \operatorname{dist}(p, q)$. We show that this function attains its minimum on K. If K is bounded, then it is compact, and thus the statement follows from the continuity of the distance function. If K is not bounded, then let us choose a closed ball B centered at p that contains a point from K. By the compactness of $K \cap B$ the function $\operatorname{dist}(P,$.$) attains its minimum on (K \cap B)$, and thus minimum coincides with the minimum attained on K.

Let $\operatorname{dist}(p, q)$ be the minimum of the function $\operatorname{dist}(p,$.$) , where q \in K$, and let H denote the hyperplane containing q and perpendicular to $q-p$. whose normal vector is q. Since the minimum is positive by the choice of $p, p \notin H$. On the other hand, if the open half space bounded by H and containing q contains some point $r \in K$, then the segment $[q, r$], which belongs to K by the convexity of K, contains a point of K closer to p than q, which contradicts the choice of q. Thus, the closed half space bounded by H and not containing p contains K, which contradicts the choice of p.

It is easy to see that the closure of a convex set is convex. This yields the following remark.

Corollary 1. If $K \subseteq \mathbb{R}^{n}$ convex, then for every boundary point of K there is a hyperplane H containing it such that K is contained in one of the two closed half spaces bounded by H.

Definition 1. Let $X \subset \mathbb{R}^{n}$ be a nonempty set. Then the intersection of all convex sets that contain X is called the convex hull of X, and is denoted by $\operatorname{conv}(X)$.

Theorem 2. Let $X \subset \mathbb{R}^{n}$ be a nonempty set. Then the convex hull of X is the set of the convex combinations of finite subsets of X.

Proof. Let $p=\sum_{i=1}^{k} \lambda_{i} a_{i}$ and $q=\sum_{j=1}^{m} \mu_{j} b_{j}$ be two arbitrary convex combinations of points from X. Then a point of the segment $[p, q]$ can be written as $s=\alpha p+\beta q$ for some $\alpha, \beta \geq 0$ és $\alpha+\beta=1$. But then $s=\alpha \sum_{i=1}^{k} \lambda_{i} a_{i}+\beta \sum_{j=1}^{m} \mu_{j} b_{j}=\sum_{i=1}^{k} \alpha \lambda_{i} a_{i}+\sum_{j=1}^{m} \beta \mu_{j} b_{j}$, which is a convex combination of the points $a_{1}, a_{2}, \ldots, a_{k}, b_{1}, b_{2}, \ldots, b_{m}$, and hence, the set of convex combinations is convex.

Now, by induction on the number k of points, we prove that any convex set K containing X contains all convex combinations of points of X. Since points of a segment are convex combinations of the endpoints, for $k=2$ the statement is follows from the convexity of X. Assume that K contains all k-element convex combination, and consider some convex combination $p=\sum_{i=1}^{k+1} \alpha_{i} a_{i}$. If a coefficient in it is zero, we can apply the induction hypothesis directly. Thus, we may assume that e.g. $0<\alpha_{k+1}<1$. Then, let $\beta_{i}=\frac{\alpha_{i}}{1-\alpha_{k+1}}$ for all $i=1,2, \ldots, k$. Note that due to $\sum_{i=1}^{k} \beta_{i}=1$, the point $q=\sum_{i=1}^{k} \beta_{i} a_{i}$ is an element of K. As $p=\left(1-\alpha_{k+1}\right) q+\alpha_{k+1} a_{k+1}$ is a point of the segment $\left[q, a_{k+1}\right]$, we also have $p \in K$.

