LECTURE 2: CONVEX COMBINATION, CONVEX HULL

In this lecture we continue the investigation of convex sets.

Remark 1. The intersection of arbitrarily many convex sets is convex.

Theorem 1. Let $K \subseteq \mathbb{R}^n$ be a closed, convex set. Then K coincides with the intersection of the closed half spaces containing K.

Proof. Let K' denote the intersection of the closed hald spaces containing X. Since the intersection of closed, convex sets is closed and convex, we have $K \subseteq K'$. We need to show that $K' \subseteq K$.

Suppose for contradiction that there is some point $p \in K' \setminus K$. Consider the function $q \mapsto \operatorname{dist}(p,q)$. We show that this function attains its minimum on K. If K is bounded, then it is compact, and thus the statement follows from the continuity of the distance function. If K is not bounded, then let us choose a closed ball B centered at p that contains a point from K. By the compactness of $K \cap B$ the function $\operatorname{dist}(P, .)$ attains its minimum on $(K \cap B)$, and thus minimum coincides with the minimum attained on K.

Let $\operatorname{dist}(p,q)$ be the minimum of the function $\operatorname{dist}(p,.)$, where $q \in K$, and let H denote the hyperplane containing q and perpendicular to q-p. whose normal vector is q. Since the minimum is positive by the choice of $p, p \notin H$. On the other hand, if the open half space bounded by H and containing q contains some point $r \in K$, then the segment [q, r], which belongs to K by the convexity of K, contains a point of K closer to p than q, which contradicts the choice of q. Thus, the closed half space bounded by H and not containing p contains K, which contradicts the choice of p. \Box

It is easy to see that the closure of a convex set is convex. This yields the following remark.

Corollary 1. If $K \subseteq \mathbb{R}^n$ convex, then for every boundary point of K there is a hyperplane H containing it such that K is contained in one of the two closed half spaces bounded by H.

Definition 1. Let $X \subset \mathbb{R}^n$ be a nonempty set. Then the intersection of all convex sets that contain X is called the convex hull of X, and is denoted by $\operatorname{conv}(X)$.

Theorem 2. Let $X \subset \mathbb{R}^n$ be a nonempty set. Then the convex hull of X is the set of the convex combinations of finite subsets of X.

Proof. Let $p = \sum_{i=1}^{k} \lambda_i a_i$ and $q = \sum_{j=1}^{m} \mu_j b_j$ be two arbitrary convex combinations of points from X. Then a point of the segment [p,q] can be written as $s = \alpha p + \beta q$ for some $\alpha, \beta \ge 0$ és $\alpha + \beta = 1$. But then $s = \alpha \sum_{i=1}^{k} \lambda_i a_i + \beta \sum_{j=1}^{m} \mu_j b_j = \sum_{i=1}^{k} \alpha \lambda_i a_i + \sum_{j=1}^{m} \beta \mu_j b_j$, which is a convex combination of the points $a_1, a_2, \ldots, a_k, b_1, b_2, \ldots, b_m$, and hence, the set of convex combinations is convex.

Now, by induction on the number k of points, we prove that any convex set K containing X contains all convex combinations of points of X. Since points of a segment are convex combinations of the endpoints, for k = 2 the statement is follows from the convexity of X. Assume that K contains all k-element convex combination, and consider some convex combination $p = \sum_{i=1}^{k+1} \alpha_i a_i$. If a coefficient in it is zero, we can apply the induction hypothesis directly. Thus, we may assume that e.g. $0 < \alpha_{k+1} < 1$. Then, let $\beta_i = \frac{\alpha_i}{1-\alpha_{k+1}}$ for all $i = 1, 2, \ldots, k$. Note that due to $\sum_{i=1}^{k} \beta_i = 1$, the point $q = \sum_{i=1}^{k} \beta_i a_i$ is an element of K. As $p = (1 - \alpha_{k+1})q + \alpha_{k+1}a_{k+1}$ is a point of the segment $[q, a_{k+1}]$, we also have $p \in K$.