
LECTURE 3: RADON'S, CARATHÉODORY'S AND
HELLY'S THEOREMS

We continue the class with proving three fundamental theorems of
convex geometry: Radon's, Carathéodory's and Helly's theorems.

Theorem 1 (Radon). Let X ⊂ Rn be a set containing at least n + 2
points. Then X can be decomposed into two parts whose convex hulls

have a nonempty intersection.

Proof. Let p1, p2, . . . , pm ∈ X, where m > n+1. Consider the following
homogeneous system of linear equations:

m∑
i=1

αi = 0

m∑
i=1

αipi = 0

This system of equations consists of n + 1 equations and m > n + 1
variables, and hence it has a (β1, β2, . . . , βm) nontrivial solution.
Let V = {i : βi > 0} and W = {i : βi ≤ 0}. Observe that because of

the �rst equation of the system we have V ̸= ∅ ≠ W , as in the opposite
case βi = 0 for all values of i, but the solution is nontrivial. We can
also observe that by the same equation

∑
i∈V

βi =
∑
i∈W

(−βi). Let β > 0

denote the common value of the two sides in the above equation. Then
the point

p =
∑
i∈V

βi

β
pi =

∑
i∈W

−βi

β
pi

can be written as convex combinations of points from both {pi : i ∈
V },and {pi : i ∈ W}, and thus, it lies in the intersection of the convex
hulls of these two disjoint sets. 2

It can be easily shown that if X is an a�nely independent set of n+1
points for which affX = Rn, then for X the above statement does not
hold. Thus, the quantity n + 2 in the theorem cannot be replaced by
n+ 1.

Theorem 2 (Carathéodory). Let X ⊂ Rn be an arbitrary nonempty

set. If p ∈ convX, then X has a subset Y consisting of at most n+ 1
points, satisfying p ∈ conv(Y ).
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Proof. Assume that m > n+1 is the smallest positive integer for which
p can be written as a convex combination of m points of X. Let

(1) p =
m∑
i=1

αipi,

where
m∑
i=1

αi = 1, and for i = 1, 2, . . . ,m we have αi ≥ 0 and pi ∈ X.

Since m is the smallest positive integer satisfying these conditions, we
have αi > 0 for all values of i.
By Radon's theorem, the set {pi : i = 1, 2, . . . ,m} can be de-

composed into two disjoint sets whose convex hulls have nonempty
intersection. In other words, there are disjoint sets V and W for
which V ∪W = {1, 2, . . . ,m}, and nonnegative numbers βi for which∑
i∈V

βi =
∑
i∈W

βi = 1 and
∑
i∈V

βipi =
∑
i∈W

βipi. Thus, by introducing the

notation γi = βi for i ∈ V and γi = −βi for i ∈ W , we obtain

(2)
m∑
i=1

γipi = 0, and
m∑
i=1

γi = 0.

Let k be a subscript such that γk < 0 and

(3)
αk

γk
≥ αi

γi

for all value of i with γi < 0.

Adding
(
−αk

γk

)
times the equation (2) to (1), we obtain a linear

combination

p =
m∑
i=1

(
αi −

αk

γk
γi

)
pi

in which the sum of the coe�cients is 1. On the other hand, every
coe�cient is nonnegative, since it is clearly satis�ed if γi ≥ 0, and in
the opposite case it is the consequence of the inequality in (3). As the
kth coe�cient is zero, we expressed p as a convex combination of at
most m− 1 points, which is a contradiction. 2

Observe that if X = {p1, p2, . . . , pn+1} is a�nely independent in Rn,

then the point p = 1
n+1

n+1∑
i=1

pi is in conv(X), but it is not contained

in the convex hull of any proper subset of X. We can also observe
that while Carathéodory's theorem describes how one can build up the
convex hull of a set `from inside', that is from the points of the set,
Theorem 4 and Corollary 4 of the �rst lecture describe how to get to
the convex hull `from outside'.
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De�nition 1. The convex hulls of k-element subsets of Rn with k ≤
n + 1 are called simplices. If the point set is a�nely independent, we

call the simplex nondegenerate. Then the elements of the point set are

the vertices of the nondegenerate simplex, and the convex hull of two

vertices is an edge of the simplex. If k = n + 1, then the convex hull

of n vertices is a facet of the simplex. If all edges of a nondegenerate

simplex are of equal length, we call the simplex regular.

In the following we introduce an application of Carathéodory's the-
orem.

Theorem 3. Let H ⊂ Rn be compact. Then conv(H) is also compact.

Proof. Let

A =

{
(α1, α2, . . . , αn+1) ∈ Rn+1 :

n+1∑
i=1

αi = 1 and αi ≥ 0, i = 1, 2, . . . , n+ 1

}
.

Observe that A is compact. Consider the map f : Rn+1×(Rn)n+1 → Rn

de�ned as

f(α1, . . . , αn+1, p1, . . . , pn+1) =
n+1∑
i=1

αipi

for all αi ∈ R, pi ∈ Rn (i = 1, 2, . . . , n+ 1).
Then f is a continuous map and f(A × Hn+1) = convH. As the

direct product of compact sets is compact, the image of a compact set
under a continuous map is compact, we have that conv(H) is compact.
2

Before describing another application of Carathéodory's theorem,
we verify another statement that can often be used in convex geometry
problems.

Proposition 1. Let H be a closed half space bounded by the hyperplane

H0, and let X ⊂ H be arbitrary. Then conv(X)∩H0 = conv(X ∩H0).

Proof. Since H0 is convex and X ∩H0 ⊆ X, we obtain conv(X ∩H0) ⊆
conv(X) ∩H0. We show that conv(X) ∩H0 ⊆ conv(X ∩H0).
Let p ∈ conv(X)∩H0 be arbitrary. Then, by Theorem 1 in the lecture

with a suitable choice of p1, . . . , pk ∈ X, α1, . . . , αk > 0,
∑k

i=1 αi = 1,

we have p =
∑k

i=1 αipi. As H is a closed half space, there are some
α ∈ R and u ∈ Rn such that H = {x ∈ Rn : ⟨x, u⟩ ≥ α} és H0 = {x ∈
Rn : ⟨x, u⟩ = α}. Thus,

α = ⟨u, p⟩ =

〈
u,

k∑
i=1

αipi

〉
=

k∑
i=1

αi⟨u, pi⟩ ≥
k∑

i=1

αiα = 1,
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with equality if and only if ⟨u, pi⟩ = α for all values of i. Consequently,
pi ∈ H0 ∩X for all is, from which p ∈ conv(X ∩H0). 2

Theorem 4 (colorful Carathéodory theorem). Let X1, X2, . . . , Xn+1 ⊂
Rn be compact sets. Assume that for any i we have o ∈ convXi. Then

there are some points pi ∈ Xi such that o ∈ conv{p1, p2, . . . , pn+1}.

In the theorem, Xi denotes the set of points with `color i'. Thus, the
statement guarantees that there is a `rainbow simplex' containing the
origin.

Proof. We prove by contradiction. Suppose that there is no `rainbow
simplex' containing the origin. Let Y = conv(p1, p2, . . . , pn+1), pi ∈ Xi

be a `rainbow simplex' whose distance from o is minimal. Since the sets
Xi are compact, such a simplex exists. Let q be the (unique) point of
Y whose distance from o is minimal, and let H denote the closed half
space not containing o, which contains q in its boundary and whose
bounding hyperplane is perpendicular to q. If Y had a point in the
complement of H, then Y would contain a point closer to o than q, and
thus, Y ⊂ H.
If Y had a vertex pi which is not in the boundary of H, then

o ∈ convXi yields that there is some point p′i ∈ Xi not in H. But by
Proposition 1 then q ∈ conv{p1, p2, . . . , pi−1, pi+1, . . . , pn+1}, and hence
conv(p1, . . . , pi−1, p

′
i, pi+1, . . . , pn+1) is a simplex which has a point closer

to o than q, a contradiction. Thus Y is contained in the bounding
hyperplane of H. But then, applying Carathéodory's theorem for
this hyperplane, we obtain that for a suitable index i, we have that
q ∈ conv{p1, . . . , pi−1, pi+1, . . . , pn+1, and thus, similar to the previous
case, we may replace pi to a point p′i ∈ X in the complement of H, we
obtain a simplex closer to o. 2

We continue with the description of an important theorem of convex
geometry, and with an introduction of one of its applications.

Theorem 5 (Helly, �nite). Let K be a �nite family of at least n + 1
convex sets in Rn. If any (n + 1) elements of K have a nonempty

intersection, then all elements of K have a nonempty intersection.

Proof. Let the cardinality of K be |K| = k. We prove the theorem
by induction on k. The statement clearly holds if k = n + 1. Let us
assume that it holds for all families with k elements, and let us consider
a family K consisting of k+1 convex sets in Rn with the property that
any n+1 elements of K have a nonempty intersection. By the induction
hypothesis, for any K ∈ K there is a point pK with the property that
pK is contained in every element of K but K. Let X = {pK : K ∈ K}.
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Radon's theorem implies that X can be written as the disjoint union
of two sets X1, X2, whose convex hulls have a nonempty intersection.
Let p ∈ convX1 ∩ convX2. As pK ∈ K ′ for every K ′ ̸= K, K ′ ∈ K,
we have that if pK ∈ X1, then X2 ⊂ K. This yields by the convexity
of K that convX2 ⊂ K. We obtain similarly that if pK ∈ X2, then
convX1 ⊂ K. Now, since p ∈ convX1 ∩ convX2, from this it follows
that p ∈ K for every K ∈ K; that is, the intersection of all elements of
K is not empty. 2

The example of the n + 1 facets of a simplex shows that there are
families of convex sets in Rn in which every n elements have a nonempty
intersection, but there is no point contained in all elements of the fam-
ily.
We have seen that Radon's theorem implies both Carathéodory's

and Helly's theorem. Nevertheless, it can be shown that the Radon's
theorem can be derived from any of the two latter theorems, which
implies that these theorems are equivalent.
Helly's theorem also has a variant for families with in�nitely many

members.

Theorem 6 (Helly, in�nite). Let K be a family of at least n+1 closed,

convex sets in Rn such that at least one member of K is compact. As-

sume that any n+1 elements of K have a nonempty intersection. Then

there is a point which is contained in every element of K.

Proof. According to the previous theorem it is su�cient to examine
families K with in�nitely many members, and we can also assume that
any �nitely many elements of K have a nonempty intersection. Assume
that there is no point belonging to every element of K. Let K ∈ K
be a compact, closed set. Observe that all elements of the family
K′ = {Rn \ C : C ∈ K} are open. On the other hand, since there is
no point that belongs to every member of K, the family K′ is an open
cover of Rn, and in particular, K. As K is compact, K′ has �nitely
many elements whose union covers K. But then the complements of
these sets has no common point that belongs to K, which contradicts
our assumption that any �nitely many elements of K have a common
point. 2

Our next examples show that the statement in the theorem does not
hold if K has elements that are not closed, or if K has no compact
element.
Example. Let Ki = {(x, y) ∈ R2 :

(
x− 1

i

)2
+ y2 ≤ 1

i2
} for every

i = 1, 2, 3, . . ., and let K0 = {(x, y) ∈ R2 : (x− 2)2 + y2 < 4}. It can
be easily seen that any �nitely many elements of the family K = {Ki :
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i = 0, 1, 2, . . .} have a nonempty intersection, but the intersection of
all elements is the empty set.
Example. Let Ki = {(x, y) ∈ R2 : y ≥ i} be for every i = 1, 2, 3, . . ..
Then any �nitely many elements of K = {Ki : i = 1, 2, . . .} have a
nonempty intersection, but the intersection of all elements is empty.
Finally, we present an application of Helly's theorems.

De�nition 2. The diameter of a bounded set A ⊂ Rn is the supremum

of the distances of all pairs of points from the set.

Theorem 7 (Jung). A set in Rn having diameter d can be covered by

a closed Euclidean ball of radius d ·
√

n
2(n+1)

.

We remark that the quantity in the theorem is the circumradius of
the regular n-dimensional simplex of edge length d, and prove Jung's
theorem in next class.


