
LECTURE 4: JUNG'S THEOREM AND MINKOWSKI

SUMS

In this lecture we start with proving an application of Helly's theo-
rems. Let us recall Jung's theorem.

Theorem 1 (Jung). A set in Rn having diameter d can be covered by

a closed Euclidean ball of radius d ·
√

n
2(n+1)

.

We remark that the quantity in the theorem is the circumradius of
the regular n-dimensional simplex of edge length d.

Proof. Let the diameter of S ⊂ Rn be d, and for every p ∈ S, let Gp

denote the set of points x in Rn with the property that the closed ball

of radius d ·
√

n
2(n+1)

and center x covers p. Note that Gp is the closed

ball of radius d ·
√

n
2(n+1)

centered at p (bot conditions are equivalent to

saying that ||x−p|| ≤ d ·
√

n
2(n+1)

), and thus, it is compact and convex.

Hence, if we can verify that
k⋂

i=1

Gpi ̸= ∅ for any p1, p2, . . . , pk ∈ S and

k ≤ n + 1, then from Helly's theorem (in�nite version) it follows that⋂
p∈S

Gp ̸= ∅, which readily yields our theorem.

Let p1, p2, . . . , pk ∈ S with k ≤ n + 1, and let q be the center of
the smallest closed ball containing the points p1, p2, . . . , pk. We show

that the radius of G is at most r ≤ d
√

n
2(n+1)

. Observe that q ∈
conv{p1, p2, . . . , pn+1}, as otherwise there is a smaller ball that contains
the points. Without loss of generality, we may assume that q = o. In
addition, since we have only �nitely many points, G is the smallest ball
that contains those pis that are contained in its boundary, and thus,
we may assume that ||pi|| =

√
⟨pi, pi⟩ = r for all values f i. As the

diameter of S is d, we have ||pi − pj|| = dist(pi, pj) ≤ d for all i and j.
Thus,

d2 ≥ ⟨pi − pj, pi − pj⟩ = ||pi||2 + ||pj||2 − 2⟨pi, pj⟩ = 2r2 − 2⟨pi, pj⟩.
1
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As o = q =
k∑

i=1

αipi, where αi ≥ 0 and
k∑

i=1

αi = 1, we obtain that for

all values of i,

1− αi =
∑
j ̸=i

αj ≥
∑
j ̸=i

αj
⟨pi − pj, pi − pj⟩

d2
=

∑
j ̸=i

αj
2r2 − 2⟨pi, pj⟩

d2
,

where from the equality ⟨pi, pi⟩ = r2 it follows that

1− αi ≥ 2
∑
j ̸=i

αj
r2

d2
− 2

∑
j ̸=i

⟨pi, pj⟩αj

d2
+ 2αi

r2 − ⟨pi, pi⟩
d2

=

= 2
r2

d2

k∑
j=1

αj −
2

d2

〈
pi,

k∑
j=1

αjpj

〉
=

2r2

d2
.

Summing up for all is, we obtain that

k − 1 =
k∑

i=1

(1− αi) ≥ k
2r2

d2
,

from which, as k ≤ n+ 1, the inequality

r2 ≤ k − 1

2k
d2 ≤ n

2n+ 2
d2

follows. 2

To continue, recall the de�nition of the Minkowski sum of two sets
from the �rst lecture.

De�nition 1 (Lecture 1, De�nition 1). Let V1 and V2 be two point

sets, and let λ ∈ R. Then

V1 + V2 = {v1 + v2 : v1 ∈ V1, v2 ∈ V2}

is the Minkowski sum of the two sets and

λV1 = {λv1 : v1 ∈ V1}

is the multiple of V1 by λ.

Remark 1. To `draw' the Minkowski sum of two sets we should think

it over that by de�nition, V1 + V2 =
⋃

v1∈V1
(v1 + V2), implying that

the sum of the two sets can be obtained as the region `swept' by the

translates of one of the sets where the translation vectors run over the

other set.

Proposition 1. If K,L ⊂ Rn are convex, then K + L is convex.
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Proof. We need to show that the segment connecting any two points
of K + L belongs to K + L. In other words, we need to show that if
pk, qk ∈ K and pL, qL ∈ L, then [pK+pL, qK+qL] ⊆ K+L. Let t ∈ [0, 1]
be arbitrary. Then t(pK + qK)+ (1− t)(pL+ qL) = (tpK + (1− t)qK)+
(tpL + (1− t)qL), where by the convexity ofK and L, we have tpK+(1−
t)qK ∈ K and tpL+(1− t)qL ∈ L. Thus, t(pK+qK)+(1− t)(pL+qL) ∈
K + L, from which the statement follows. 2

De�nition 2. Let A ⊂ Rn be an arbitrary bounded set. Then the

function

hA : Rn → R, hA(x) = sup{⟨x, y⟩ : y ∈ A}
is called the support function of A.

We �nish with stating a theorem about support function, which we
are going to prove next week.

Theorem 2. Let A ⊂ Rn be an arbitrary bounded set containing o.
Then the support function hA of A is:

(i) convex, that is, h (tx+ (1− t)y) ≤ th(x)+(1− t)h(y) for every

x, y ∈ Rn and t ∈ [0, 1];
(ii) h nonnegative, and for any λ ≥ 0 and x ∈ Rn, we have h(λx) =

λh(x).

Furthermore, for any function h satisfying the above properties there

is a unique compact, convex set A ⊂ Rn, containing o, whose support

function is h.


