LECTURE 4: JUNG’S THEOREM AND MINKOWSKI
SUMS

In this lecture we start with proving an application of Helly’s theo-
rems. Let us recall Jung’s theorem.

Theorem 1 (Jung). A set in R"™ having diameter d can be covered by
a closed Euclidean ball of radius d - m

We remark that the quantity in the theorem is the circumradius of
the regular n-dimensional simplex of edge length d.

Proof. Let the diameter of S C R" be d, and for every p € S, let G,
denote the set of points x in R with the property that the closed ball

of radius d -, /55 and center x covers p. Note that G, is the closed

ball of radius d- , /ﬁ centered at p (bot conditions are equivalent to

saying that ||z —p|| < d-, /55%75), and thus, it is compact and convex.

k

Hence, if we can verify that () G, # 0 for any pi,ps,...,pr € S and
i=1

k <n+ 1, then from Helly’s theorem (infinite version) it follows that

N G, # 0, which readily yields our theorem.

peS
Let p1,po,...,pr € S with k < n + 1, and let ¢ be the center of

the smallest closed ball containing the points pi, po, ..., pr. We show

that the radius of G is at most r < d 2(++1) Observe that ¢ €
conv{pi, P2, ..., Pnt1}, as otherwise there is a smaller ball that contains
the points. Without loss of generality, we may assume that ¢ = 0. In
addition, since we have only finitely many points, G is the smallest ball
that contains those p;s that are contained in its boundary, and thus,
we may assume that |[p;|| = \/(pi,p;) = r for all values f i. As the
diameter of S is d, we have ||p; — p;|| = dist(p;, p;) < d for all ¢ and j.
Thus,

d* > (pi — pj, i — pj) = l|pil|” + |Ips1 1> = 2{pi, pj) = 2r* — 2(p;, p;)-
1
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Aso=q=> a;p;, where o; > 0 and >  a; = 1, we obtain that for
i=1 =1
all values of 1,
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where from the equality (p;,p;) = 72 it follows that
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Summing up for all 18, we obtain that
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k—1=) (1—a;) > k=

i=1
from which, as k < n + 1, the inequality

2k 2n + 2

follows. O

To continue, recall the definition of the Minkowski sum of two sets
from the first lecture.

Definition 1 (Lecture 1, Definition 1). Let Vi and V3 be two point
sets, and let A € R. Then

Vi+Vo={vi+wvy:v €Vy,v € Va}
s the Minkowski sum of the two sets and
AVi= {1 € Vi)
is the multiple of V1 by .

Remark 1. To ‘draw’ the Minkowski sum of two sets we should think
it over that by definition, Vi + Vo = U, oy, (01 + V2), implying that
the sum of the two sets can be obtained as the region ‘swept’ by the
translates of one of the sets where the translation vectors run over the
other set.

Proposition 1. If K, L C R" are convez, then K + L 1s convex.
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Proof. We need to show that the segment connecting any two points
of K + L belongs to K 4+ L. In other words, we need to show that if
Pk, @ € K and pr, qp, € L, then [px+pr,qx+qr] € K+L. Let t € [0, 1]
be arbitrary. Then t(px +qx )+ (1 —t)(pr +qr) = (tpr + (1 — t)qx) +
(tpr + (1 — t)qr), where by the convexity of K and L, we have tpg+(1—
t)qx € K and tpr,+ (1—t)qr, € L. Thus, t(px+qx)+(1—t)(pL+q1) €

K + L, from which the statement follows. O
Definition 2. Let A C R" be an arbitrary bounded set. Then the
function

ha:R" =R, ha(x)=sup{(z,y) :y € A}
is called the support function of A.

We finish with stating a theorem about support function, which we
are going to prove next week.

Theorem 2. Let A C R"™ be an arbitrary bounded set containing o.
Then the support function hy of A is:
(i) conver, that is, h (tx + (1 — t)y) < th(x)+ (1 —t)h(y) for every
z,y € R" and t € [0, 1];
(ii) h nonnegative, and for any A > 0 and x € R™, we have h(\x) =
Ah(x).
Furthermore, for any function h satisfying the above properties there
is a unique compact, conver set A C R", containing o, whose support
function is h.



