LECTURE 5: MINKOWSKI SUM

Let us recall the definition of the Minkowski sum of two sets from
the first lecture.
First, we prove the theorem stated in the last lecture.

Theorem 1. Let A C R"™ be an arbitrary bounded set containing o.
Then the support function hy of A is:

(i) convex, that is, h (tx + (1 — t)y) < th(z)+ (1 —t)h(y) for every
x,y € R" and t € [0, 1];
(ii) h nonnegative, and for any A > 0 and x € R™, we have h(\x) =
Ah(x).
Furthermore, for any function h satisfying the above properties there
is a unique compact, convexr set A C R"™, containing o, whose support
function is h.

Proof. Cearly,
ha(te + (1 —t)y) =sup{{tx + (1 —t)y,2z) : z € A} <

<tsup{(x,z): z € A}+(1—t)sup{{y, 2) : z € A} = tha(z)+(1-t)ha(y),

that is, ha is convex. The second property readily follows from the
properties of inner product.

Now, let h be a function satisfying (i) and (ii), and let A = {y €
R"™ : (x,y) < h(x) for every x € R"}. As for any fixed x, the set of
points y satisfying the inequality (z,y) < h(z) is a closed half space
containing o, the set A, which is the intersection of such sets, is a
closed, convex set containing o. We show that A is bounded, which
will imply that it is compact. Suppose for contradiction that A is not
bounded. Then there is some sequence p,, € A, p,, # o, for which
||[pm|] — oo. Since the boundary of a unit ball is compact, we can
assume that there is some unit vector ¢ satisfying ﬁ — ¢q. But the

convexity and closedness of A yields that in this case Hg#\l’ q € A from

which one can see that the half line {\¢ : A € [0,00)}, starting at o
and passing through ¢ belongs to A. But then with the choice z = ¢
we have (Aq, q) < h(q) for any A > 0, which is a contradiction. Thus,
we have seen that A is compact. On the other hand, for any vector
z € R", we have hy(z) = sup{(z,y) : y € A} < h(z) by the definition
of A.
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We will show that ha(z) > h(z), that is, that there is a point y € A,
for which (y,z) = h(z). Since this statement clearly holds if z = o
or h(z) = 0, we assume that z # o and h(z) > 0. Let us define the
epigraph of h as the closed set Fj = {(z,a) : h(z) < a} CR*" xR
(note that this set is the region ‘above’ the graph of h in R"*1), If
(z,a), (y,B) € Ep and t € [0,1], then h(tz + (1-)y) < th(z) + (1 —
t)h(y) < ta + (1 — t)5, implying that Ej is convex, and clearly, if
(r,a) € Ep and A > 0, then (Az, a) € Ej. By the definition of
epigraph, (z, h(z)) is a boundary pooint of Ej, and hence, by Corollary
4 of the first lecture, there are (y, 8) € R” xR and o € R which satisfy
(y,w) + py < a for any (w,~y) € E, and (y,z) + fh(z) = a. Since
z # o, from the positive homogeneity of Ej, it follows that « = 0. On
the other hand, since h is defined on the whole space R", we have [ # 0,
and thus, with a suitable choice of y we may assume that 5 = —1. But
from this (y,z) = h(z), which is what we wanted to prove. Thus,
ha=h.

Finally, we show that the support functions of different compact,
convex sets containing o are different. Let A;, A be such sets. As
Ay # As, by suitably choosing indices there is a point p € A; \ Ay. But
then by Corollary 4 of the first lecture there is some u € R” and o € R
such that (u,p) > «, and (u,z) < « for every z € As. But from this
ha,(u) > ha,(u) follows. O

Proposition 1. For any conver sets K, L C R", we have hg.; =
hix + hr.

Proof. 1f © € R, then
hicyr(x) = sup{(z,y) + (z,2) ;y € K,z € L} =
= sup{(z,y) : y €} +sup{(z,2) : z € L} = hx(x) + hp(x).



