
LECTURE 5: MINKOWSKI SUM

Let us recall the de�nition of the Minkowski sum of two sets from
the �rst lecture.
First, we prove the theorem stated in the last lecture.

Theorem 1. Let A ⊂ Rn be an arbitrary bounded set containing o.
Then the support function hA of A is:

(i) convex, that is, h (tx+ (1− t)y) ≤ th(x)+(1− t)h(y) for every

x, y ∈ Rn and t ∈ [0, 1];
(ii) h nonnegative, and for any λ ≥ 0 and x ∈ Rn, we have h(λx) =

λh(x).

Furthermore, for any function h satisfying the above properties there

is a unique compact, convex set A ⊂ Rn, containing o, whose support

function is h.

Proof. Cearly,

hA(tx+ (1− t)y) = sup{⟨tx+ (1− t)y, z⟩ : z ∈ A} ≤

≤ t sup{⟨x, z⟩ : z ∈ A}+(1−t) sup{⟨y, z⟩ : z ∈ A} = thA(x)+(1−t)hA(y),

that is, hA is convex. The second property readily follows from the
properties of inner product.
Now, let h be a function satisfying (i) and (ii), and let A = {y ∈

Rn : ⟨x, y⟩ ≤ h(x) for every x ∈ Rn}. As for any �xed x, the set of
points y satisfying the inequality ⟨x, y⟩ ≤ h(x) is a closed half space
containing o, the set A, which is the intersection of such sets, is a
closed, convex set containing o. We show that A is bounded, which
will imply that it is compact. Suppose for contradiction that A is not
bounded. Then there is some sequence pm ∈ A, pm ̸= o, for which
||pm|| → ∞. Since the boundary of a unit ball is compact, we can
assume that there is some unit vector q satisfying pm

||pm|| → q. But the

convexity and closedness of A yields that in this case pm
||pm|| , q ∈ A from

which one can see that the half line {λq : λ ∈ [0,∞)}, starting at o
and passing through q belongs to A. But then with the choice x = q
we have ⟨λq, q⟩ ≤ h(q) for any λ ≥ 0, which is a contradiction. Thus,
we have seen that A is compact. On the other hand, for any vector
z ∈ Rn, we have hA(z) = sup{⟨z, y⟩ : y ∈ A} ≤ h(z) by the de�nition
of A.
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We will show that hA(z) ≥ h(z), that is, that there is a point y ∈ A,
for which ⟨y, z⟩ = h(z). Since this statement clearly holds if z = o
or h(z) = 0, we assume that z ̸= o and h(z) > 0. Let us de�ne the
epigraph of h as the closed set Eh = {(x, α) : h(x) ≤ α} ⊆ Rn × R
(note that this set is the region `above' the graph of h in Rn+1). If
(x, α), (y, β) ∈ Eh and t ∈ [0, 1], then h(tx + (1−)y) ≤ th(x) + (1 −
t)h(y) ≤ tα + (1 − t)β, implying that Eh is convex, and clearly, if
(x, α) ∈ Eh and λ ≥ 0, then (λx, λα) ∈ Eh. By the de�nition of
epigraph, (z, h(z)) is a boundary pooint of Eh, and hence, by Corollary
4 of the �rst lecture, there are (y, β) ∈ Rn×R and α ∈ R which satisfy
⟨y, w⟩ + βγ ≤ α for any (w, γ) ∈ Eh, and ⟨y, z⟩ + βh(z) = α. Since
z ̸= o, from the positive homogeneity of Eh it follows that α = 0. On
the other hand, since h is de�ned on the whole space Rn, we have β ̸= 0,
and thus, with a suitable choice of y we may assume that β = −1. But
from this ⟨y, z⟩ = h(z), which is what we wanted to prove. Thus,
hA = h.
Finally, we show that the support functions of di�erent compact,

convex sets containing o are di�erent. Let A1, A2 be such sets. As
A1 ̸= A2, by suitably choosing indices there is a point p ∈ A1 \A2. But
then by Corollary 4 of the �rst lecture there is some u ∈ Rn and α ∈ R
such that ⟨u, p⟩ > α, and ⟨u, x⟩ ≤ α for every x ∈ A2. But from this
hA1(u) > hA2(u) follows. 2

Proposition 1. For any convex sets K,L ⊂ Rn, we have hK+L =
hK + hL.

Proof. If x ∈ Rn, then

hK+L(x) = sup{⟨x, y⟩+ ⟨x, z⟩ : y ∈ K, z ∈ L} =

= sup{⟨x, y⟩ : y ∈}+ sup{⟨x, z⟩ : z ∈ L} = hK(x) + hL(x).
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