LECTURE 5: MINKOWSKI SUM

Let us recall the definition of the Minkowski sum of two sets from the first lecture.

First, we prove the theorem stated in the last lecture.

Theorem 1. Let $A \subset \mathbb{R}^n$ be an arbitrary bounded set containing o. Then the support function h_A of A is:

- (i) convex, that is, $h(tx + (1-t)y) \le th(x) + (1-t)h(y)$ for every $x, y \in \mathbb{R}^n$ and $t \in [0, 1]$;
- (ii) h nonnegative, and for any $\lambda \ge 0$ and $x \in \mathbb{R}^n$, we have $h(\lambda x) = \lambda h(x)$.

Furthermore, for any function h satisfying the above properties there is a unique compact, convex set $A \subset \mathbb{R}^n$, containing o, whose support function is h.

Proof. Cearly,

$$h_A(tx + (1-t)y) = \sup\{\langle tx + (1-t)y, z \rangle : z \in A\} \le$$

 $\leq t \sup\{\langle x, z \rangle : z \in A\} + (1-t) \sup\{\langle y, z \rangle : z \in A\} = th_A(x) + (1-t)h_A(y),$

that is, h_A is convex. The second property readily follows from the properties of inner product.

Now, let h be a function satisfying (i) and (ii), and let $A = \{y \in \mathbb{R}^n : \langle x, y \rangle \leq h(x) \text{ for every } x \in \mathbb{R}^n\}$. As for any fixed x, the set of points y satisfying the inequality $\langle x, y \rangle \leq h(x)$ is a closed half space containing o, the set A, which is the intersection of such sets, is a closed, convex set containing o. We show that A is bounded, which will imply that it is compact. Suppose for contradiction that A is not bounded. Then there is some sequence $p_m \in A$, $p_m \neq o$, for which $||p_m|| \to \infty$. Since the boundary of a unit ball is compact, we can assume that there is some unit vector q satisfying $\frac{p_m}{||p_m||} \to q$. But the convexity and closedness of A yields that in this case $\frac{p_m}{||p_m||}$, $q \in A$ from which one can see that the half line $\{\lambda q : \lambda \in [0, \infty)\}$, starting at o and passing through q belongs to A. But then with the choice x = q we have $\langle \lambda q, q \rangle \leq h(q)$ for any $\lambda \geq 0$, which is a contradiction. Thus, we have seen that A is compact. On the other hand, for any vector $z \in \mathbb{R}^n$, we have $h_A(z) = \sup\{\langle z, y \rangle : y \in A\} \leq h(z)$ by the definition of A.

We will show that $h_A(z) \ge h(z)$, that is, that there is a point $y \in A$, for which $\langle y, z \rangle = h(z)$. Since this statement clearly holds if z = oor h(z) = 0, we assume that $z \neq o$ and h(z) > 0. Let us define the epigraph of h as the closed set $E_h = \{(x, \alpha) : h(x) \leq \alpha\} \subseteq \mathbb{R}^n \times \mathbb{R}$ (note that this set is the region 'above' the graph of h in \mathbb{R}^{n+1}). If $(x, \alpha), (y, \beta) \in E_h$ and $t \in [0, 1]$, then $h(tx + (1-)y) \leq th(x) + (1 - 1)$ $t(y) \leq t\alpha + (1-t)\beta$, implying that E_h is convex, and clearly, if $(x,\alpha) \in E_h$ and $\lambda \geq 0$, then $(\lambda x, \lambda \alpha) \in E_h$. By the definition of epigraph, (z, h(z)) is a boundary pooint of E_h , and hence, by Corollary 4 of the first lecture, there are $(y,\beta) \in \mathbb{R}^n \times \mathbb{R}$ and $\alpha \in \mathbb{R}$ which satisfy $\langle y, w \rangle + \beta \gamma \leq \alpha$ for any $(w, \gamma) \in E_h$, and $\langle y, z \rangle + \beta h(z) = \alpha$. Since $z \neq o$, from the positive homogeneity of E_h it follows that $\alpha = 0$. On the other hand, since h is defined on the whole space \mathbb{R}^n , we have $\beta \neq 0$, and thus, with a suitable choice of y we may assume that $\beta = -1$. But from this $\langle y, z \rangle = h(z)$, which is what we wanted to prove. Thus, $h_A = h.$

Finally, we show that the support functions of different compact, convex sets containing o are different. Let A_1, A_2 be such sets. As $A_1 \neq A_2$, by suitably choosing indices there is a point $p \in A_1 \setminus A_2$. But then by Corollary 4 of the first lecture there is some $u \in \mathbb{R}^n$ and $\alpha \in \mathbb{R}$ such that $\langle u, p \rangle > \alpha$, and $\langle u, x \rangle \leq \alpha$ for every $x \in A_2$. But from this $h_{A_1}(u) > h_{A_2}(u)$ follows. \Box

Proposition 1. For any convex sets $K, L \subset \mathbb{R}^n$, we have $h_{K+L} = h_K + h_L$.

Proof. If $x \in \mathbb{R}^n$, then

$$h_{K+L}(x) = \sup\{\langle x, y \rangle + \langle x, z \rangle : y \in K, z \in L\} =$$
$$= \sup\{\langle x, y \rangle : y \in\} + \sup\{\langle x, z \rangle : z \in L\} = h_K(x) + h_L(x).$$

 $\mathbf{2}$