
LECTURE 6: SEPARATION

Remark 1. Let L1, L2 ⊆ Rn be linear subspaces with dim(L1) = k and
dim(L2) = n− k for some 0 ≤ k ≤ n, and let L1 ∩L2 = {o}. Then the
union of a basis of L1 and a basis of L2 is a basis of Rn, and hence, for
any point p ∈ Rn there are unique points p1 ∈ L1, p2 ∈ L2 satisfying
p = p1 + p2.

De�nition 1. Let L1, L2 ⊆ Rn be linear subspaces with dim(L1) = k
and dim(L2) = n − k for some 0 ≤ k ≤ n, and let L1 ∩ L2 = {o}.
For any x ∈ Rn let x1 ∈ L1, x2 ∈ L2 denote those unique points that
satisfy x = x1 + x2. Then the linear transformation π : Rn → L2,
π(x) = x2 is called projection onto L2 parallel to L1. If L1 is the
orthogonal complement of L2, then we say that π is the orthogonal
projection onto L2.

From the de�nition it is clear that if dim(L1) = k and L is an a�ne
subspace of dimension m in L2, then π−1(L) is an (m+ k)-dimensional
a�ne subspace in Rn.

Remark 2. If the conditions of the previous remark are satis�ed for the
linear subspaces L1, L2 ⊆ Rn then for any p1, p2 ∈ Rn, the intersection
of p1 + L1 and p2 + L2 is a singleton. Indeed, by the previous remark,
p1 can be decomposed to the sum of a vector from L1 and a vector from
L2,and hence, as x+ L1 = L1 if x ∈ L1, we may assume that p1 ∈ L2.
Similarly, we may assume that p2 ∈ L1. Thus, if x ∈ Rn is contained
in both subspaces, then, writing it in the form x = x1 + x2, x1 ∈ L1,
x2 ∈ L2, the previous remark implies that x1 = p2 and x2 = p1; on
the other hand p1 + p2 is an element of both subspaces. Based on this
observation, projection can be de�ned not only for linear subspaces, but
also for a�ne subspaces.

Proposition 1. Let L1, L2 ⊆ Rn be linear subspaces with dim(L1) = k
and dim(L2) = n − k for some 0 ≤ k ≤ n, and let L1 ∩ L2 =
{o}. Let π be the projection onto L2 parallel to L1. Then for any
open/compact/convex set X ⊂ Rn, π(X) is open/compact/convex, re-
spectively, and for any open/closed/convex set Y ⊆ L2, the set π−1(Y )
is open/closed/convex, respectively.

Proof. For any point x ∈ Rn the projection of a neighborhood of x is
a neighborhood of π(x) in L2, and hence, if X ⊆ Rn open, then π(X)
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is also open. Similarly, the projection of a closed segment is the closed
segment connecting the projections of the endpoints, which yields that
if X is convex, then so is π(X). The statement for the projection
of a compact set follows from the observation that π is a continuous
function, and thus, the image of a compact set is compact. Similarly,
it also follows that the preimage of an open/closed set is open/closed,
respectively. Now, if Y ⊂ L2 is convex, then for any p, q ∈ Y choose
some points p′, q′ ∈ Rn π(p′) = p, π(q′) = q. As π([p′, q′]) = [p, q] ⊆ Y
by the convexity of Y , we clearly have [p′, q′] ⊆ π−1([p, q]), implying
that π−1(Y ) is convex. 2

De�nition 2. Let A,B ⊆ Rn. Let H be a hyperplane, and let H+

and H− be the two closed half spaces bounded by H. We say that H
separates A and B if A ⊆ H+ and B ⊆ H−, or B ⊆ H+ and A ⊆ H−.
If H separates A and B, and A∩H = B ∩H = ∅, then we say that H
strictly separates A and B. If A ⊆ H, and B ⊆ H+ or B ⊆ H−, then
we say that H isolates A from B. If, in addition, B ∩H = ∅, then we
say that H strictly isolates A from B.

Theorem 1 (Isolation theorem). Let K ⊆ Rn be an open, convex set,
and let o /∈ K. Then there is a hyperplane H that isolates o from K.

We remark that if a hyperplane H isolates of from K, then by the
openness of K it also strictly isolates o from K.

Proof. The statement is trivial if n = 1. First, we prove it for n = 2.
Let S1 be the set of unit vectors in R2, i.e. let it be the boundary of the
circular disk centered at o and with unit radius. Let p : R2 \ {o} → S1

be the central projection onto S1, i.e. let p(v) = v
||v|| . Since K is

convex, therefore it is connected, and thus, p(K) is also connected. It
is also clear that since K is open, the set p(K) is also open. Thus,
p(K) is an open circular arc in S1. If p(K) contains two opposite
points u,−u, then there would be positive real numbers λ1, λ2 > 0
with λ1u,−λ2u ∈ K. But this would imply by the convexity of K
that o ∈ K, which contradicts our assumptions. Hence, p(K) does not
contain opposite points, which yields that the length of p(K) is at most
π, or in other words, there are opposite points u,−u ∈ S1 such that
neither one belongs to p(K). This yields that there is a line through o
disjoint from K.
If n > 2, we prove the statement by induction on n. Assume that

the statement holds in Rk for every 1 ≤ k < n.
Consider a plane P through o. Since P ∩K is an open, convex set,

we may apply the case n = 2 of the statement and obtain a line L ⊂ S
through o disjoint from K. Let H = L⊥ be the orthogonal complement
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of L. Let π be the orthogonal projection onto H (parallel to L). Then
by Proposition 1, π(K) is an open, convex set in H, and thus, by the
induction hypothesis, there is some (n−2)-dimensional linear subspace
G ⊂ H (n − 2) disjoint from π(K). But then π−1(G) is a hyperplane
H ′ in Rn, which contains o and is disjoint from π−1(π(K)), and in
particular from K. Thus, by the convexity of K, H ′ isolates o from K.
2

The question arises whether a point can be isolated from convex sets
in general. To be able to answer this question, we �rst prove some
lemmas.

Lemma 1. If K ⊆ Rn is convex and int(K) ̸= ∅, then K ⊆ cl(int(K)).

This statement is clearly false if int(K) = ∅.
Proof. Let p ∈ K and q ∈ int(K) be arbitrary, where, without loss of
generalty, we may assume that p = o. As q ∈ intK, there is some
ε > 0 such that the neighborhood of q of radius ε is a subset of K. But
then for any point r ∈ (o, q), the neighborhood of r of radius ||r||ε

||q|| is a

subset of K, implying that (o, q) ⊂ int(K). Thus, o ∈ cl(int(K)). 2

Lemma 2. If K ⊂ Rn is convex and int(K) = ∅, then dim(K) < n,
or in other words, there is a hyperplane H with K ⊆ H.

Proof. The proof is based on the observation that if the points p1, p2, . . . , pn+1

are a�nely independent, then the interior of conv{p1, . . . , pn+1 is not
empty: indeed, if, e.g. 1

n+1

∑n+1
i=1 pi is a boundary point of the convex

hull, then by the compactness of the convex hull(2nd lecture, Theorem
4) according to Corollary 4 of the 1st lecture, there is a closed half
space containing the convex hull and containing the above point in its
boundary, but then by Proposition 1 of the 2nd lecture the bounding
hyperplane of this half space contains all of the pis, which contradicts
our assumption that they are a�nely independent.
Now, let p1, . . . , pk an a�nely independent point system of maximal

cardinality in K. Then, by the previous observation, k ≤ n, implying
that there is a hyperplane H containing all of the points. If K has
some point p /∈ H, then it follows from Corollary 1 and Theorem 2 of
the 1st lecture that p1, . . . , pk, p are a�nely independent, which is in
contradiction with the choice of the point system. Thus, K ⊆ H. 2

Theorem 2 (Isolation theorem 2). Let K ⊆ Rn be convex with o /∈
int(K). Then there is a hyperplane H isolating o from K.

Proof. Assume that int(K) ̸= ∅. Since int(K) is convex (Exercise 3
from the �rst worksheet), by the isolation theorem there is a hyperplane
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H that isolates o from int(K). But then, since closed half spaces are
closed sets, H isolates o from cl(int(K)), and thus, also from K.
Now, let int(K) = ∅ and let G = aff(K). Then the relative interior

of K is nonempty in G, and hence, there is an a�ne subspace G′ in
G for which dim(G′) = dim(G) − 1, and which isolates o from K in
G. But then, choosing any hyperplane H satisfying G ∩ H = G′, H
isolates o from K. 2

Theorem 3. If K,L ⊂ Rn are disjoint, convex sets, then K and L can
be separated by a hyperplane.

Proof. Let M = K − L = K + (−1)L. Since K and L are disjoint,
o /∈ K − L. But then, by the previous theorem, there is a hyperplane
H which isolates o from M . In other words, there is a linear functional
f : Rn → R satisfying f(x) ≥ 0 for any x ∈ M . But then M = K − L
implies 0 ≤ inf{f(x) : x ∈ M} = inf{f(x) − f(y) : x ∈ K, y ∈ L} =
inf{f(x) : x ∈ K} − sup{f(y) : y ∈ L}. Let α = inf{f(x) : x ∈ K}.
Then, according to the conditions, for any x ∈ K we have f(x) ≥ α,
and for any x ∈ L we have f(x) ≤ α, and thus, the hyperplane {x :
f(x) = α} separates K and L. 2

Corollary 1. If K,L ⊂ Rn are disjoint, open, convex sets, then K and
L can be strictly separated by a hyperplane.

Problem 1. Give an example of convex sets K,L ⊂ Rn whose interiors
are disjoint, but which cannot be separated by a hyperplane.


