LECTURE 6: SEPARATION

Remark 1. Let $L_{1}, L_{2} \subseteq \mathbb{R}^{n}$ be linear subspaces with $\operatorname{dim}\left(L_{1}\right)=k$ and $\operatorname{dim}\left(L_{2}\right)=n-k$ for some $0 \leq k \leq n$, and let $L_{1} \cap L_{2}=\{o\}$. Then the union of a basis of L_{1} and a basis of L_{2} is a basis of \mathbb{R}^{n}, and hence, for any point $p \in \mathbb{R}^{n}$ there are unique points $p_{1} \in L_{1}, p_{2} \in L_{2}$ satisfying $p=p_{1}+p_{2}$.

Definition 1. Let $L_{1}, L_{2} \subseteq \mathbb{R}^{n}$ be linear subspaces with $\operatorname{dim}\left(L_{1}\right)=k$ and $\operatorname{dim}\left(L_{2}\right)=n-k$ for some $0 \leq k \leq n$, and let $L_{1} \cap L_{2}=\{o\}$. For any $x \in \mathbb{R}^{n}$ let $x_{1} \in L_{1}, x_{2} \in L_{2}$ denote those unique points that satisfy $x=x_{1}+x_{2}$. Then the linear transformation $\pi: \mathbb{R}^{n} \rightarrow L_{2}$, $\pi(x)=x_{2}$ is called projection onto L_{2} parallel to L_{1}. If L_{1} is the orthogonal complement of L_{2}, then we say that π is the orthogonal projection onto L_{2}.

From the definition it is clear that if $\operatorname{dim}\left(L_{1}\right)=k$ and L is an affine subspace of dimension m in L_{2}, then $\pi^{-1}(L)$ is an $(m+k)$-dimensional affine subspace in \mathbb{R}^{n}.

Remark 2. If the conditions of the previous remark are satisfied for the linear subspaces $L_{1}, L_{2} \subseteq \mathbb{R}^{n}$ then for any $p_{1}, p_{2} \in \mathbb{R}^{n}$, the intersection of $p_{1}+L_{1}$ and $p_{2}+L_{2}$ is a singleton. Indeed, by the previous remark, p_{1} can be decomposed to the sum of a vector from L_{1} and a vector from L_{2}, and hence, as $x+L_{1}=L_{1}$ if $x \in L_{1}$, we may assume that $p_{1} \in L_{2}$. Similarly, we may assume that $p_{2} \in L_{1}$. Thus, if $x \in \mathbb{R}^{n}$ is contained in both subspaces, then, writing it in the form $x=x_{1}+x_{2}, x_{1} \in L_{1}$, $x_{2} \in L_{2}$, the previous remark implies that $x_{1}=p_{2}$ and $x_{2}=p_{1}$; on the other hand $p_{1}+p_{2}$ is an element of both subspaces. Based on this observation, projection can be defined not only for linear subspaces, but also for affine subspaces.

Proposition 1. Let $L_{1}, L_{2} \subseteq \mathbb{R}^{n}$ be linear subspaces with $\operatorname{dim}\left(L_{1}\right)=k$ and $\operatorname{dim}\left(L_{2}\right)=n-k$ for some $0 \leq k \leq n$, and let $L_{1} \cap L_{2}=$ $\{o\}$. Let π be the projection onto L_{2} parallel to L_{1}. Then for any open/compact/convex set $X \subset \mathbb{R}^{n}, \pi(X)$ is open/compact/convex, respectively, and for any open/closed/convex set $Y \subseteq L_{2}$, the set $\pi^{-1}(Y)$ is open/closed/convex, respectively.

Proof. For any point $x \in \mathbb{R}^{n}$ the projection of a neighborhood of x is a neighborhood of $\pi(x)$ in L_{2}, and hence, if $X \subseteq \mathbb{R}^{n}$ open, then $\pi(X)$
is also open. Similarly, the projection of a closed segment is the closed segment connecting the projections of the endpoints, which yields that if X is convex, then so is $\pi(X)$. The statement for the projection of a compact set follows from the observation that π is a continuous function, and thus, the image of a compact set is compact. Similarly, it also follows that the preimage of an open/closed set is open/closed, respectively. Now, if $Y \subset L_{2}$ is convex, then for any $p, q \in Y$ choose some points $p^{\prime}, q^{\prime} \in \mathbb{R}^{n} \pi\left(p^{\prime}\right)=p, \pi\left(q^{\prime}\right)=q$. As $\pi\left(\left[p^{\prime}, q^{\prime}\right]\right)=[p, q] \subseteq Y$ by the convexity of Y, we clearly have $\left[p^{\prime}, q^{\prime}\right] \subseteq \pi^{-1}([p, q])$, implying that $\pi^{-1}(Y)$ is convex.

Definition 2. Let $A, B \subseteq \mathbb{R}^{n}$. Let H be a hyperplane, and let H^{+} and H^{-}be the two closed half spaces bounded by H. We say that H separates A and B if $A \subseteq H^{+}$and $B \subseteq H^{-}$, or $B \subseteq H^{+}$and $A \subseteq H^{-}$. If H separates A and B, and $A \cap H=B \cap H=\emptyset$, then we say that H strictly separates A and B. If $A \subseteq H$, and $B \subseteq H^{+}$or $B \subseteq H^{-}$, then we say that H isolates A from B. If, in addition, $B \cap H=\emptyset$, then we say that H strictly isolates A from B.
Theorem 1 (Isolation theorem). Let $K \subseteq \mathbb{R}^{n}$ be an open, convex set, and let $o \notin K$. Then there is a hyperplane H that isolates o from K.

We remark that if a hyperplane H isolates of from K, then by the openness of K it also strictly isolates o from K.
Proof. The statement is trivial if $n=1$. First, we prove it for $n=2$. Let \mathbb{S}^{1} be the set of unit vectors in \mathbb{R}^{2}, i.e. let it be the boundary of the circular disk centered at o and with unit radius. Let $p: \mathbb{R}^{2} \backslash\{o\} \rightarrow \mathbb{S}^{1}$ be the central projection onto \mathbb{S}^{1}, i.e. let $p(v)=\frac{v}{\|v\|}$. Since K is convex, therefore it is connected, and thus, $p(K)$ is also connected. It is also clear that since K is open, the set $p(K)$ is also open. Thus, $p(K)$ is an open circular arc in \mathbb{S}^{1}. If $p(K)$ contains two opposite points $u,-u$, then there would be positive real numbers $\lambda_{1}, \lambda_{2}>0$ with $\lambda_{1} u,-\lambda_{2} u \in K$. But this would imply by the convexity of K that $o \in K$, which contradicts our assumptions. Hence, $p(K)$ does not contain opposite points, which yields that the length of $p(K)$ is at most π, or in other words, there are opposite points $u,-u \in \mathbb{S}^{1}$ such that neither one belongs to $p(K)$. This yields that there is a line through o disjoint from K.

If $n>2$, we prove the statement by induction on n. Assume that the statement holds in \mathbb{R}^{k} for every $1 \leq k<n$.

Consider a plane P through o. Since $P \cap K$ is an open, convex set, we may apply the case $n=2$ of the statement and obtain a line $L \subset S$ through o disjoint from K. Let $H=L^{\perp}$ be the orthogonal complement
of L. Let π be the orthogonal projection onto H (parallel to L). Then by Proposition $1, \pi(K)$ is an open, convex set in H, and thus, by the induction hypothesis, there is some $(n-2)$-dimensional linear subspace $G \subset H(n-2)$ disjoint from $\pi(K)$. But then $\pi^{-1}(G)$ is a hyperplane H^{\prime} in \mathbb{R}^{n}, which contains o and is disjoint from $\pi^{-1}(\pi(K))$, and in particular from K. Thus, by the convexity of K, H^{\prime} isolates o from K.

The question arises whether a point can be isolated from convex sets in general. To be able to answer this question, we first prove some lemmas.

Lemma 1. If $K \subseteq \mathbb{R}^{n}$ is convex and $\operatorname{int}(K) \neq \emptyset$, then $K \subseteq \operatorname{cl}(\operatorname{int}(K))$.
This statement is clearly false if $\operatorname{int}(K)=\emptyset$.
Proof. Let $p \in K$ and $q \in \operatorname{int}(K)$ be arbitrary, where, without loss of generalty, we may assume that $p=o$. As $q \in \operatorname{int} K$, there is some $\varepsilon>0$ such that the neighborhood of q of radius ε is a subset of K. But then for any point $r \in(o, q)$, the neighborhood of r of radius $\frac{\|r\| \varepsilon}{\|q\| \|}$ is a subset of K, implying that $(o, q) \subset \operatorname{int}(K)$. Thus, $o \in \operatorname{cl}(\operatorname{int}(K))$.

Lemma 2. If $K \subset \mathbb{R}^{n}$ is convex and $\operatorname{int}(K)=\emptyset$, then $\operatorname{dim}(K)<n$, or in other words, there is a hyperplane H with $K \subseteq H$.
Proof. The proof is based on the observation that if the points $p_{1}, p_{2}, \ldots, p_{n+1}$ are affinely independent, then the interior of $\operatorname{conv}\left\{p_{1}, \ldots, p_{n+1}\right.$ is not empty: indeed, if, e.g. $\frac{1}{n+1} \sum_{i=1}^{n+1} p_{i}$ is a boundary point of the convex hull, then by the compactness of the convex hull(2nd lecture, Theorem 4) according to Corollary 4 of the 1st lecture, there is a closed half space containing the convex hull and containing the above point in its boundary, but then by Proposition 1 of the 2nd lecture the bounding hyperplane of this half space contains all of the $p_{i} \mathrm{~s}$, which contradicts our assumption that they are affinely independent.

Now, let p_{1}, \ldots, p_{k} an affinely independent point system of maximal cardinality in K. Then, by the previous observation, $k \leq n$, implying that there is a hyperplane H containing all of the points. If K has some point $p \notin H$, then it follows from Corollary 1 and Theorem 2 of the 1st lecture that p_{1}, \ldots, p_{k}, p are affinely independent, which is in contradiction with the choice of the point system. Thus, $K \subseteq H$.

Theorem 2 (Isolation theorem 2). Let $K \subseteq \mathbb{R}^{n}$ be convex with o \notin $\operatorname{int}(K)$. Then there is a hyperplane H isolating o from K.
Proof. Assume that $\operatorname{int}(K) \neq \emptyset$. Since $\operatorname{int}(K)$ is convex (Exercise 3 from the first worksheet), by the isolation theorem there is a hyperplane
H that isolates o from $\operatorname{int}(K)$. But then, since closed half spaces are closed sets, H isolates o from $\operatorname{cl}(\operatorname{int}(K))$, and thus, also from K.

Now, let $\operatorname{int}(K)=\emptyset$ and let $G=\operatorname{aff}(K)$. Then the relative interior of K is nonempty in G, and hence, there is an affine subspace G^{\prime} in G for which $\operatorname{dim}\left(G^{\prime}\right)=\operatorname{dim}(G)-1$, and which isolates o from K in G. But then, choosing any hyperplane H satisfying $G \cap H=G^{\prime}, H$ isolates o from K.

Theorem 3. If $K, L \subset \mathbb{R}^{n}$ are disjoint, convex sets, then K and L can be separated by a hyperplane.

Proof. Let $M=K-L=K+(-1) L$. Since K and L are disjoint, $o \notin K-L$. But then, by the previous theorem, there is a hyperplane H which isolates o from M. In other words, there is a linear functional $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ satisfying $f(x) \geq 0$ for any $x \in M$. But then $M=K-L$ implies $0 \leq \inf \{f(x): x \in M\}=\inf \{f(x)-f(y): x \in K, y \in L\}=$ $\inf \{f(x): x \in K\}-\sup \{f(y): y \in L\}$. Let $\alpha=\inf \{f(x): x \in K\}$. Then, according to the conditions, for any $x \in K$ we have $f(x) \geq \alpha$, and for any $x \in L$ we have $f(x) \leq \alpha$, and thus, the hyperplane $\{x$: $f(x)=\alpha\}$ separates K and L.

Corollary 1. If $K, L \subset \mathbb{R}^{n}$ are disjoint, open, convex sets, then K and L can be strictly separated by a hyperplane.
Problem 1. Give an example of convex sets $K, L \subset \mathbb{R}^{n}$ whose interiors are disjoint, but which cannot be separated by a hyperplane.

