
LECTURE 7: SEPARATION, FACES OF CONVEX

SETS, EXTREMAL AND EXPOSED POINTS, THE

KREIN-MILMAN THEOREM

We start with two theorems regarding separation.

Theorem 1. Let K,L ⊂ Rn be convex sets with int(K) ̸= ∅ and
int(K) ∩ L = ∅. Then K and L can be separated by a hyperplane.

Proof. We have seen that ifK is convex, then int(K) is convex (Exercise
3 on the �rst worksheet). But then by last theorem on the last lecture,
the sets int(K) and L can be separated by a hyperplane. Since we
learned that if int(K) ̸= ∅, then K ⊂ cl(int(K)), and a hyperplane
separating int(K) and L separates also cl(int(K)) and L, the assertion
follows. 2

Theorem 2. If K,L ⊂ Rn are disjoint, convex sets, K is compact and
L is closed, then K and L can be strictly separated by a hyperplane.

Proof. We apply the idea of Theorem 4 in the �rst lecture. Let x ∈ K
and y ∈ L be arbitrarily chosen points, and let r = ||y − x||. Let L0

be the set of the points of L whose distance from a point of K is at
most r; in other words, let L0 = L∩ (K+ rBn), where Bn is the closed
unit ball centered at o. Then the distance between any points of L\L0

and K is greater than r, yielding that dist(K,L) = dist(K,L0), where
dist(A,B) = inf{||a − b|| : a ∈ A, b ∈ B}. But both K and L0 are
compact sets, and hence, there are points x ∈ K and y ∈ L for which
dist(x, y) is minimal. Let H be the hyperplane bisecting the segment
[x, y]. Then H strictly separates K and L, as otherwise there are points
x′ ∈ K and y′ ∈ L for which ||x′ − y′|| < ||x− y||. 2

We have already seen (Corollary 4 in the �rst lecture) that for every
boundary point of a convex set there is a hyperplane through the point
such that the set is contained in one of the two closed half spaces
bounded by the hyperplane. This is the motivation behind the following
de�nitions.

De�nition 1. Let K ⊆ Rn be a convex set. If H is a closed half space
satisfying K ⊆ H and whose boundary intersects the boundary of K,
we say that H is a supporting half space of K, and the boundary of H
is a supporting hyperplane of K.
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De�nition 2. Let K ⊆ Rn be a closed, convex set and let H be a
supporting hyperplane of K. Then the set H ∩ K is called a proper
face of K. The empty set is called a not proper face of K. The 0-
dimensional faces (consisting of only one point) are called the exposed
points of K, and their set is denoted by ex(K).

Our �rst observation implies the next remark in a natural way.

Remark 1. If K ⊆ Rn is closed and convex, and p ∈ Rn is a boundary
point of K, then K has a proper face F such that p ∈ F .

Problem 1. Construct closed, convex sets which have no exposed points.

Proposition 1. If F is a proper face of the closed, convex set K ⊆ Rn,
then F is closed and convex.

Proof. Since every proper face F of K can be written as F = K ∩H,
where H is a supporting hyperplane of K, and a hyperplane is closed
and convex, the assertion follows from the fact that the intersection of
closed, convex sets is closed and convex. 2

De�nition 3. Let K ⊆ Rn be closed and convex. If p ∈ bdK, and for
every q, r ∈ K, p ∈ [q, r] we have p = q or p = r, then we say that p is
an extremal point of K. In other words, the extremal points of K are
the points of K that are not relative interior points of a segment in K.
The set of the extremal points of K is denoted by ext(K).

Proposition 2. If K ⊆ Rn is closed and convex, then ex(K) ⊆ ext(K).

Proof. Let p be an exposed point ofK. Then there is a linear functional
f : Rn → R and a quantity α ∈ R such that K ⊂ f−1([α,∞)), and
K ∩ f−1(α) = {p}. Assume that q, r ∈ K and p ∈ [q, r]. Then there is
value t ∈ [0, 1] with p = tq+(1−t)r. By our conditions and the linearity
of f , we have α = f(p) = tf(q) + (1 − t)f(r) ≥ tα + (1 − t)α = α.
But here, inequality occurs if and only if t = 1 and f(q) = α, or t = 0
and f(r) = α, or f(q) = f(r) = α. But these yield p = q, p = r, and
p = q = r, respectively, implying the statement. 2

Example. Let K ⊆ R2 be the union of the unit square [0, 1]2 and the
circular region de�ned by the inequality (x − 1/2)2 + y2 ≤ 1/4.then o
and the point (1, 0) are extremal points of K, but not exposed points of
L. Thus, there are closed, convex sets K for which ex(K) and ext(K)
do not coincide.
Our next theorem explores the connection between extremal points

and linear functionals.
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Theorem 3. Let K ⊆ Rn be a closed, convex set, and let f : Rn → R
be a linear functional whose minimal or maximal value on K is α. Let
F = K∩f−1(α). Then p ∈ F is an extremal point of F if and only if it
is an extremal point of K. In other words, ext(F ) = ext(K) ∩ f−1(α).

Before proving Theorem 3, we observe that if p ∈ ex(K), then there
is a linear functional f : Rn → R which attains its minimum on K
only at p. Thus, a consequence of this theorem is the containment
ex(K) ⊆ ext(K) for every closed, convex set K.

Proof. Assume that p ∈ ext(K) and p ∈ F . Then, by the de�nition of
extremal point, for any q, r ∈ K, p ∈ [q, r] we have q = p or r = p. In
particular, this holds also for any q, r ∈ F , implying that p ∈ ext(F ).
Now, let p ∈ ext(F ), and consider points q, r ∈ K with p ∈ [q, r].

If q ̸= p and r ̸= p, then for a suitable t ∈ (0, 1), p = tq + (1 − t)r.
But from this α = f(p) = f(tq + (1 − t)r) = tf(q) + (1 − t)f(r). As
f(q), f(r) ≥ α, there is equality if and only if f(q) = f(r) = α, azaz
ha q, r ∈ F . But as p ∈ ext(F ), thiy yields q = p or r = p, which is a
contradiction. 2

Our next theorem shows an important property of extremal points.

Theorem 4 (Krein, Milman). Any compact,convex set K ⊂ Rn is the
convex hull of its extremal points.

Proof. We prove the statement by induction on the dimension. Assume
that K ⊂ R is a compact, convex set. Then K is a closed segment,
whose extremal points are its endpoints, and the segment is the convex
hull of its endpoints. Thus, the assertion holds for n = 1.
Assume that the statement is true for any at most (n−1)-dimensional

compact, convex set, and letK beK an n-dimensional compact, convex
set. Let p ∈ K be arbitrary, and let L bi an arbitrary line through p.
According to our conditions, L ∩ K is a closed �nite segment. Let
the endpoints of this segment be q and r, where these points may
not be distinct from each other or p. Then, by Remark 1, there are
faces Fq and Fr of K such that q ∈ Fq and r ∈ Fr. But as Fq and
Fr are convex subsets of the boundary of K, they have no interior
points, and thus, by Lemma 2 of the fourth lecture, they are at most
(n−1)-dimensional compact, convex sets. By the induction hypothesis,
we have q ∈ conv ext(Fq) és r ∈ conv ext(Fr). But by the de�nition
of face, there are linear functionals fq : Rn → R and fr : Rn → R
attaining their minima exactly at Fq and Fr, respectively, and thus, by
Theorem 3, the extremal points of Fq and Fr are extremal points of K.
But then p ∈ [q, r] ⊆ conv(ext(Fq) ∪ ext(Fr)) ⊆ conv(ext(K)). 2



4

We have seen that the extremal points of a set are not necessarily ex-
posed points. On the other hand, it is true that they are accumulation
points of sequences of exposed points.

Theorem 5 (Straszevicz). For any compact, convex set K ⊂ Rn we
have K = cl(conv(ex(K))); or in other words, K is equal to the closure
of convex hull of its exposed points.

Proof. Let x ∈ ext(K) and ε > 0 be arbitrary. Let us consider the
compact, convex set Kε = conv(K \ intBε(x)) ⊆ K, where Bε(x)
denotes the closed ball of radius ε and center x. If x ∈ Kε, then by the
Carathéodory theorem it is the convex combination of at most n + 1
points of (K \ intBε(x)); that is, it is a relative interior point of a
segment in K. But this contradicts the assumption that x ∈ ext(K),
and thus, x /∈ Kε.
Note that Kε is a compact, convex set, and thus, it can be strictly

separated from p. In other words, there is a hyperplane H such that
one of the closed half spaces bounded by it intersects K in a subset of
Bε(x), and this half space contains x in its interior. Let H+ denote this
closed half space. Let L be the half line starting at x, perpendicular
to H and intersecting H. For any y ∈ L let z(y) be a farthest point
of K from y. Then z(y) ∈ ex(K) for any y ∈ L (see Problem sheet
5, Exercise 4). On the other hand, if y is su�ciently far from x, then
z(y) ∈ Bε(x). Thus x ∈ cl(ex(K)), from which ext(K) ⊆ cl(ex(K)).
By the containment relation conv(cl(X)) ⊆ cl(conv(X)), satis�ed

for any set X ⊆ Rn, and by the Krein-Milman Theorem, we have

K ⊆ conv(ext(K)) ⊆ conv(cl(ex(K))) ⊆ cl(conv(ex(K))) ⊆ K,

that is, K = cl(conv(ex(K))). 2


