
LECTURE 8: VALUATIONS AND THE EULER

CHARACTERISTIC

Let us recall the following concept from our previous studies.

De�nition 1. Let A ⊂ Rn be a set. The indicator function I[A] of the
set is the function

I[A](x) =

{
1, if x ∈ A,
0, if x /∈ A.

We remark that for any A,B ⊂ Rn, we have I[A] · I[B] = I[A ∩B].

Lemma 1 (Inclusion-exclusion formula). For any sets A1, A2, . . . , Ak ⊂
Rn,

I[A1 ∪ A2 ∪ . . . ∪ Ak] = 1− (1− I[A1])(1− I[A2]) . . . (1− I[Ak]) =

=
k∑

j=1

(−1)j−1
∑

1≤i1<i2<...<ij≤k

I[Ai1 ∩ Ai2 ∩ . . . ∩ Aij ].

Proof. Let us introduce the notation B̄ = Rn \ B for any set B ⊆ Rn.
Observe that the �rst statement is equivalent to the equality

A1 ∪ A2 ∪ . . . ∪ Ak = Ā1 ∩ Ā2 ∩ . . . Āk,

which readily follows from the de Morgan identities. The second state-
ment is a consequence of the previous remark. 2

De�nition 2. The real vector space generated by the indicator functionsI[A]
of the compact, convex sets A ⊂ Rn is called the algebra of compact,
convex sets, and is denoted by K(Rn). The real vector space generated

by the indicator functionsI[A] of the closed, convex sets A ⊂ Rn is

called the algebra of closed, convex sets, and is denoted by C(Rn).

Remark 1. An arbitrary element of K(Rn) can be written as
k∑

i=1

αiI[Ai],

where αi ∈ R, and the sets Ai ⊂ Rn are compact and convex. Observe

that if A,B ⊂ Rn are compact, convex sets, then A∩B is also compact

and convex, implying that the product of two elements of K(Rn) is also
an element of K(Rn). Thus, the set K(Rn) is indeed an algebra over

R. A similar observation can be made about the algebra C(Rn).

De�nition 3. A linear map K(Rn) → R or C(Rn) → R is called a

valuation.
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The main goal of this lecture is the proof of the next theorem.

Theorem 1. There is a unique valuation χ : C(Rn) → R satisfying

χ(I[A]) = 1 for all nonempty, closed, convex sets A ⊂ Rn.

This valuation is called the Euler characteristic induced by the alge-
bra of closed, convex sets. Theorem 1 was �rst proved by H. Hadwiger.

Proof. Note that by the linearity of χ, it can be uniquely extended to
every element of C(Rn), implying that χ is unique. We need to show
that χ exists. We �rst de�ne this valuation on the elements of K(Rn)
by induction on the dimension.
Assume that n = 0. Then any function f ∈ K(R0) can be written

as f = αI[o] for some α ∈ R. Thus, χ(f) = α satis�es the conditions
of the theorem.
Let n > 0. Fo any x ∈ Rn, let p(x) denote the last coordinate od x,

and for any t ∈ R, de�ne the hyperplane
Ht = {x ∈ Rn : p(x) = t}.

This hyperplane can be identi�ed with Rn−1, and thus, there is a
(unique) valuation χt on it satisfying the conditions of the theorem.
For any f ∈ K(Rn), let ft denote the restriction of f onto Ht. Then, if

f =
∑k

i=1 αiI[Ai], where αi ∈ R and the Ais are compact, convex sets,
then

ft =
k∑

i=1

αiI[Ai ∩Ht],

and hence, by ft ∈ K(Ht), we have

χt(ft) =
∑

i:Ai∩Ht ̸=∅

αi.

Consider the limit
lim
ε→0+

χt−ε(ft−ε).

Note that this limit is equal to χt(ft) if and only if for any su�ciently
small ε > 0 and for every value of i, Ai∩Ht ̸= ∅ implies Ai∩Ht−ε ̸= ∅.
In general, we have that lim

ε→0+
χt−ε(ft−ε) is equal to the sum of the

αis for which, for any small ε > 0, we have Ai ∩Ht−ε ̸= ∅. That is, the
limit is χt(ft) unless t is the minimum of the orthogonal projection p
on a set Ai. Thus, for any function f , the limit di�ers from χt(ft) only
for �nitely many values of t. Based on this, we de�ne the function χ
as

χ(f) =
∑
t∈R

(
χt(ft)− lim

ε→0+
χt−ε(ft−ε)

)
.
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Consider the functions f, g ∈ K(Rn) and numbers α, β ∈ R. Since
the valuation χt, and the operation of taking limit, are linear, it follows
that χ(αf + βg) = αχ(f) + βχ(g). Furthermore, if A ⊂ Rn is a
nonempty, compact, convex set, then

χt(I[A ∩Ht])− lim
ε→0+

χt−ε(I[A ∩Ht−ε]) =

{
1, if min

x∈A
p(x) = t,

0, otherwise.

As the minimum is uniquely de�ned on A, we have χ(I[A]) = 1.
Now we extend χ to C(Rn). Using the standard notation Bρ(o) =

{x ∈ Rn : ||x|| ≤ ρ}, if f ∈ C(Rn), let

χ(f) = lim
ρ→∞

f · I[Bρ(o)].

Then χ clearly satis�es the requirements. 2

If A ⊂ Rn is a set such that I[A] ∈ C(Rn), then, instead of χ(I[A]),
we use the notationχ(A). We call this quantity the Euler characteristic
of A. We remark that Euler characteristic can be also de�ned in a
more general setting, for the so-called CW complexes. Nevertheless,
the discussion of these complexes is outside the scope of this course.
In the proof of the previous theorem, we proved also the following

lemma.

Lemma 2. Let A ⊂ Rn be a set such that I[A] ∈ K(Rn). Let t ∈ R,
and let Ht be the set of the points x = (x1, . . . , xn) with xn = t. Then

I[A ∩Ht] ∈ K(Rn), and

χ(A) =
∑
t∈R

(
χ(A ∩Ht)− lim

ε→0+
χ(A ∩Ht−ε)

)
.

The last lemma is the consequence of Lemma 1 of the sixth lecture,
and Theorem 1.

Lemma 3. Let A1, A2, . . . , Ak ⊂ Rn be sets such that I[Ai] ∈ K(Rn)
for any i = 1, 2, . . . , k. Then

χ(A1∪A2∪. . .∪Ak) =
k∑

j=1

(−1)j−1
∑

1≤i1<i2<...<ij≤k

χ(Ai1∩Ai2∩. . .∩Aij).


