## LECTURE 8: VALUATIONS AND THE EULER CHARACTERISTIC

Let us recall the following concept from our previous studies.
Definition 1. Let $A \subset \mathbb{R}^{n}$ be a set. The indicator function $I[A]$ of the set is the function

$$
I[A](x)= \begin{cases}1, & \text { if } x \in A, \\ 0, & \text { if } x \notin A .\end{cases}
$$

We remark that for any $A, B \subset \mathbb{R}^{n}$, we have $I[A] \cdot I[B]=I[A \cap B]$.
Lemma 1 (Inclusion-exclusion formula). For any sets $A_{1}, A_{2}, \ldots, A_{k} \subset$ $\mathbb{R}^{n}$,

$$
\begin{gathered}
I\left[A_{1} \cup A_{2} \cup \ldots \cup A_{k}\right]=1-\left(1-I\left[A_{1}\right]\right)\left(1-I\left[A_{2}\right]\right) \ldots\left(1-I\left[A_{k}\right]\right)= \\
=\sum_{j=1}^{k}(-1)^{j-1} \sum_{1 \leq i_{1}<i_{2}<\ldots<i_{j} \leq k} I\left[A_{i_{1}} \cap A_{i_{2}} \cap \ldots \cap A_{i_{j}}\right] .
\end{gathered}
$$

Proof. Let us introduce the notation $\bar{B}=\mathbb{R}^{n} \backslash B$ for any set $B \subseteq \mathbb{R}^{n}$. Observe that the first statement is equivalent to the equality

$$
A_{1} \cup A_{2} \cup \ldots \cup A_{k}=\overline{A_{1} \cap \bar{A}_{2} \cap \ldots \overline{A_{k}}},
$$

which readily follows from the de Morgan identities. The second statement is a consequence of the previous remark.

Definition 2. The real vector space generated by the indicator functionsI $[A]$ of the compact, convex sets $A \subset \mathbb{R}^{n}$ is called the algebra of compact, convex sets, and is denoted by $\mathcal{K}\left(\mathbb{R}^{n}\right)$. The real vector space generated by the indicator functions $[A]$ of the closed, convex sets $A \subset \mathbb{R}^{n}$ is called the algebra of closed, convex sets, and is denoted by $\mathcal{C}\left(\mathbb{R}^{n}\right)$.

Remark 1. An arbitrary element of $\mathcal{K}\left(\mathbb{R}^{n}\right)$ can be written as $\sum_{i=1}^{k} \alpha_{i} I\left[A_{i}\right]$, where $\alpha_{i} \in \mathbb{R}$, and the sets $A_{i} \subset \mathbb{R}^{n}$ are compact and convex. Observe that if $A, B \subset \mathbb{R}^{n}$ are compact, convex sets, then $A \cap B$ is also compact and convex, implying that the product of two elements of $\mathcal{K}\left(\mathbb{R}^{n}\right)$ is also an element of $\mathcal{K}\left(\mathbb{R}^{n}\right)$. Thus, the set $\mathcal{K}\left(\mathbb{R}^{n}\right)$ is indeed an algebra over $\mathbb{R}$. A similar observation can be made about the algebra $\mathcal{C}\left(\mathbb{R}^{n}\right)$.

Definition 3. A linear map $\mathcal{K}\left(\mathbb{R}^{n}\right) \rightarrow \mathbb{R}$ or $\mathcal{C}\left(\mathbb{R}^{n}\right) \rightarrow \mathbb{R}$ is called a valuation.

The main goal of this lecture is the proof of the next theorem.
Theorem 1. There is a unique valuation $\chi: \mathcal{C}\left(\mathbb{R}^{n}\right) \rightarrow \mathbb{R}$ satisfying $\chi(I[A])=1$ for all nonempty, closed, convex sets $A \subset \mathbb{R}^{n}$.

This valuation is called the Euler characteristic induced by the algebra of closed, convex sets. Theorem 1 was first proved by H. Hadwiger.

Proof. Note that by the linearity of $\chi$, it can be uniquely extended to every element of $\mathcal{C}\left(\mathbb{R}^{n}\right)$, implying that $\chi$ is unique. We need to show that $\chi$ exists. We first define this valuation on the elements of $\mathcal{K}\left(\mathbb{R}^{n}\right)$ by induction on the dimension.

Assume that $n=0$. Then any function $f \in \mathcal{K}\left(\mathbb{R}^{0}\right)$ can be written as $f=\alpha I[o]$ for some $\alpha \in \mathbb{R}$. Thus, $\chi(f)=\alpha$ satisfies the conditions of the theorem.

Let $n>0$. Fo any $x \in \mathbb{R}^{n}$, let $p(x)$ denote the last coordinate od $x$, and for any $t \in \mathbb{R}$, define the hyperplane

$$
H_{t}=\left\{x \in \mathbb{R}^{n}: p(x)=t\right\}
$$

This hyperplane can be identified with $\mathbb{R}^{n-1}$, and thus, there is a (unique) valuation $\chi_{t}$ on it satisfying the conditions of the theorem. For any $f \in \mathcal{K}\left(\mathbb{R}^{n}\right)$, let $f_{t}$ denote the restriction of $f$ onto $H_{t}$. Then, if $f=\sum_{i=1}^{k} \alpha_{i} I\left[A_{i}\right]$, where $\alpha_{i} \in \mathbb{R}$ and the $A_{i}$ are compact, convex sets, then

$$
f_{t}=\sum_{i=1}^{k} \alpha_{i} I\left[A_{i} \cap H_{t}\right]
$$

and hence, by $f_{t} \in \mathcal{K}\left(H_{t}\right)$, we have

$$
\chi_{t}\left(f_{t}\right)=\sum_{i: A_{i} \cap H_{t} \neq \emptyset} \alpha_{i} .
$$

Consider the limit

$$
\lim _{\varepsilon \rightarrow 0^{+}} \chi_{t-\varepsilon}\left(f_{t-\varepsilon}\right)
$$

Note that this limit is equal to $\chi_{t}\left(f_{t}\right)$ if and only if for any sufficiently small $\varepsilon>0$ and for every value of $i, A_{i} \cap H_{t} \neq \emptyset$ implies $A_{i} \cap H_{t-\varepsilon} \neq \emptyset$.

In general, we have that $\lim _{\varepsilon \rightarrow 0^{+}} \chi_{t-\varepsilon}\left(f_{t-\varepsilon}\right)$ is equal to the sum of the $\alpha_{i} \mathrm{~s}$ for which, for any small $\varepsilon>0$, we have $A_{i} \cap H_{t-\varepsilon} \neq \emptyset$. That is, the limit is $\chi_{t}\left(f_{t}\right)$ unless $t$ is the minimum of the orthogonal projection $p$ on a set $A_{i}$. Thus, for any function $f$, the limit differs from $\chi_{t}\left(f_{t}\right)$ only for finitely many values of $t$. Based on this, we define the function $\chi$ as

$$
\chi(f)=\sum_{t \in \mathbb{R}}\left(\chi_{t}\left(f_{t}\right)-\lim _{\varepsilon \rightarrow 0^{+}} \chi_{t-\varepsilon}\left(f_{t-\varepsilon}\right)\right) .
$$

Consider the functions $f, g \in \mathcal{K}\left(\mathbb{R}^{n}\right)$ and numbers $\alpha, \beta \in \mathbb{R}$. Since the valuation $\chi_{t}$, and the operation of taking limit, are linear, it follows that $\chi(\alpha f+\beta g)=\alpha \chi(f)+\beta \chi(g)$. Furthermore, if $A \subset \mathbb{R}^{n}$ is a nonempty, compact, convex set, then

$$
\chi_{t}\left(I\left[A \cap H_{t}\right]\right)-\lim _{\varepsilon \rightarrow 0^{+}} \chi_{t-\varepsilon}\left(I\left[A \cap H_{t-\varepsilon}\right]\right)= \begin{cases}1, & \text { if } \min _{x \in A} p(x)=t \\ 0, & \text { otherwise } .\end{cases}
$$

As the minimum is uniquely defined on $A$, we have $\chi(I[A])=1$.
Now we extend $\chi$ to $\mathcal{C}\left(\mathbb{R}^{n}\right)$. Using the standard notation $B_{\rho}(o)=$ $\left\{x \in \mathbb{R}^{n}:\|x\| \leq \rho\right\}$, if $f \in \mathcal{C}\left(\mathbb{R}^{n}\right)$, let

$$
\chi(f)=\lim _{\rho \rightarrow \infty} f \cdot I\left[B_{\rho}(o)\right] .
$$

Then $\chi$ clearly satisfies the requirements.
If $A \subset \mathbb{R}^{n}$ is a set such that $I[A] \in \mathcal{C}\left(\mathbb{R}^{n}\right)$, then, instead of $\chi(I[A])$, we use the notation $\chi(A)$. We call this quantity the Euler characteristic of $A$. We remark that Euler characteristic can be also defined in a more general setting, for the so-called $C W$ complexes. Nevertheless, the discussion of these complexes is outside the scope of this course.

In the proof of the previous theorem, we proved also the following lemma.

Lemma 2. Let $A \subset \mathbb{R}^{n}$ be a set such that $I[A] \in \mathcal{K}\left(\mathbb{R}^{n}\right)$. Let $t \in \mathbb{R}$, and let $H_{t}$ be the set of the points $x=\left(x_{1}, \ldots, x_{n}\right)$ with $x_{n}=t$. Then $I\left[A \cap H_{t}\right] \in \mathcal{K}\left(\mathbb{R}^{n}\right)$, and

$$
\chi(A)=\sum_{t \in \mathbb{R}}\left(\chi\left(A \cap H_{t}\right)-\lim _{\varepsilon \rightarrow 0^{+}} \chi\left(A \cap H_{t-\varepsilon}\right)\right) .
$$

The last lemma is the consequence of Lemma 1 of the sixth lecture, and Theorem 1.

Lemma 3. Let $A_{1}, A_{2}, \ldots, A_{k} \subset \mathbb{R}^{n}$ be sets such that $I\left[A_{i}\right] \in \mathcal{K}\left(\mathbb{R}^{n}\right)$ for any $i=1,2, \ldots, k$. Then
$\chi\left(A_{1} \cup A_{2} \cup \ldots \cup A_{k}\right)=\sum_{j=1}^{k}(-1)^{j-1} \sum_{1 \leq i_{1}<i_{2}<\ldots<i_{j} \leq k} \chi\left(A_{i_{1}} \cap A_{i_{2}} \cap \ldots \cap A_{i_{j}}\right)$.

