
LECTURE 8: CONVEX POLYTOPES

Our next topic is the theory of convex polytopes. Our main concept
is as follows.

De�nition 1. The convex hull of �nitely many points in Rn is called a

convex polytope, or shortly, polytope. If P ⊂ Rn is a convex polytope,

then the set {x1, x2, . . . , xk} ⊂ Rn is a minimal representation of P , if

(i) P = conv{x1, x2, . . . , xk}, and
(ii) for any index i, we have xi /∈ conv{x1, . . . , xi−1, xi+1, . . . , xk}.
Let us observe that every convex polytope has a minimal represen-

tation, which can be obtained by removing redundant points one by
one from any represention. It is worth noting that the exposed points
(that is, 0-dimensional faces) of a convex polytope are usually called
vertices, and the (n − 1)-dimensional faces of a convex polytope are
called facets.

Theorem 1. Let M = {x1, . . . , xk} ⊂ Rn be a minimal representation

of the convex polytope P . Then the following are equivalent:

(i) x ∈ M ,

(ii) x ∈ ex(P ),
(iii) x ∈ ext(P ).

Proof. First, we show that (i) implies (ii). Assume that x ∈ M . Then
x /∈ conv(M \ {x}). Since conv(M \ {x}) is compact and convex, there
is a hyperplane H that strictly separates it from x. Let H0 be the
hyperplane parallel to H and containing x. Then H0 ∩M = {x} and
H0 is a supporting hyperplane of P = conv(M). By Proposition 1 of
the second lecture, thenH0∩P = H0∩conv(M) = conv(H0∩M) = {x},
and hence, x is a vertex of P .
By Proposition 2 of the �fth lecture, for any closed, convex set K

we have ex(K) ⊆ ext(K). As M is compact, so is its convex hull; that
is, (ii) implies (iii). We will show that (iii) implies (i). Let x ∈ ext(P ).
Now, if x ∈ conv(M\{x}) was true, then x could be written as a convex
combination of points from M \ {x}. Choosing a minimal number of
such points one can show that then x could be written as a relative
interior point of a segment in P , which would contradict the condition
that x ∈ ext(P ). 2

Corollary 1. Every convex polytope has a unique minimal representa-

tion.
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Remark 1. By Proposition 1 of the second lecture, if H is a supporting

hyperplane of the convex set conv(X), then H ∩ conv(X) = conv(H ∩
X). From this it follows that every face of a convex polytope is a convex

polytope, and also that every convex polytope has only �nitely many

faces.

The next two statements hold for the faces of every compact, convex
sets.

Proposition 1. If K ⊂ Rn is a nonempty, compact, convex set, and

F1, . . . , Fm are faces of K, then F =
⋂m

i=1 Fi is a face of K.

Proof. If F = ∅, then F is a face of K, and thus, we may assume that
F ̸= ∅, which implies that for every i, Fi is a proper face of K. Without
loss of generality, we may assume that o ∈ F . Since Fi is a proper face
of K, there is a linear functional fi : Rn → R satisfying fi(x) ≥ 0 for
all x ∈ K, and for which f(x) = 0 for some x ∈ K if and only if x ∈ Fi.
Now, let f =

∑m
i=1 fi. This function f is a linear functional, and if

x ∈ K, then f(x) ≥ 0. Assume that x ∈ K and f(x) = 0. From this,∑m
i=1 fi(x) = 0, but since fi(x) ≥ 0 for any value of i, this is satis�ed

if and only if fi(x) = 0 for all values of i, or in other words, if x ∈ F .
Thus, F is a face of K. 2

Proposition 2. Let S2 ⊆ S1 ⊂ Rn be compact, convex sets. If F is a

face of S1, then F ∩ S2 is a face of S2.

Proof. If F ∩ S2 = ∅, then it is clearly a face of S2. Assume that
F ∩ S2 ̸= ∅, which implies that F is a proper face of S1. Let H be
a supporting hyperplane of S1 satisfying H ∩ S1 = F . Then H also
supports S2, and H∩S2 = (H∩S1)∩S2 = F ∩S2, implying that F ∩S2

is a face of S2. 2

Our next proposition, which, in some sense, is the converse of the
previous one, holds only for convex polytopes.

Proposition 3. Let F1 be a proper face of a convex polytope P , and

let F2 be a face of F1. Then F2 is a face of P .

Proof. If F2 = ∅, then the statement holds, and hence, we may assume
that F2 is a proper face of F1. According to our conditions, P has a
supporting hyperplane H in Rn satisfying P ∩ H = F1, and if F2 is
a proper face of F1, then there is a `supporting hyperplane' G of F2

in H satisfying G ∩ F1 = F2. Observe that dimG = n − 2. As P is
a convex polytope, only �nitely many vertices of P are not elements
of H, and thus, H can be rotated around G with a su�ciently small
angle in a suitable direction such that the hyperplane H ′ obtained by
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this rotation is a supporting hyperplane of P , and, from amongst the
vertices of P , it contains only those in F2. But from this, it follows
that H ′ ∩ P = F2, yielding that F2 is a face of P . 2

Problem 1. Construct a compact, convex set K ⊆ Rn with the property

that it has a proper face F1, and F1 has a proper face F2 such that F2

is not a face of K.

We have seen that every compact, convex set can be obtained as the
intersection of closed half spaces. Now we show that a convex polytope
is the intersection of �nitely many closed half spaces (namely those
de�ned by its facets).

De�nition 2. The intersection of �nitely many closed half spaces is

called a polyhedral set.

Theorem 2. Every convex polytope is a bounded polyhedral set.

Proof. Let P ⊂ Rn be a convex polytope. As P is compact, it is suf-
�cient to prove that it is a polyhedral set. Without loss of generality,
assume that dimP = n, as every hyperplane is obtained as the in-
tersection of the two closed half spaces it generates, and every a�ne
subspace is obtained as the intersection of �nitely many hyperplanes.
Let M = {x1, . . . , xk} be a minimal representation of P . Let the

facets of P be F1, . . . , Fm, and denote by Hi and H+
i the supporting

hyperplane and the closed supporting half space de�ned by Fi, respec-
tively. Then for any index i, we have P ∩ Hi = Fi and P ⊂ H+

i . We
show that P =

⋂m
i=1H

+
i .

Cearly, P ⊆
⋂m

i=1H
+
i , and thus, by contradiction, we suppose that

there is a point x ∈
(⋂m

i=1 H
+
i

)
\ P . Now, let D =

⋃
aff({x} ∪ C),

where C runs over the family of the subsets of M of cardinality at
most (n− 1). Then D is the union of �nitely many a�ne subspaces of
dimension at most (n− 1), and thus, we can choose a point y ∈ int(P )
with y /∈ D. But then, by x /∈ P , the segment [x, y] intersects the
boundary of P , that is, there is a point z ∈ (x, y) with z ∈ bd(P ). We
will show that z lies on a facet of P , but it does not lie on any lower
dimensional face of P .
Assume that z ∈ F for some j-dimensional face of P , where 0 ≤

j ≤ n − 2. Then, by Carathéodory's theorem, z is contained in the
convex hull of at most (n − 1) points of M , implying aff{x, z} ∈ D,
which contradicts the assumption that y /∈ D. By Corollary 4 of the
�rst lecture, any boundary point of a compact, convex set is a point of
a supporting hyperplane of the set, and thus, a point of a proper face
of the set. Thus, by exclusion, z is a point of a facet Fi of P . But from



4

this, by y ∈ intP ⊂ intH+
i , we obtain x /∈ Hi, which contradicts our

choice of y. This yields that P =
⋂m

i=1 H
+
i . 2

Corollary 2. The boundary of every n-dimensional convex polytope

P ⊂ Rn is the union of the facets of P .


