LECTURE 8: CONVEX POLYTOPES

Our next topic is the theory of convex polytopes. Our main concept is as follows.

Definition 1. The convex hull of finitely many points in \mathbb{R}^{n} is called a convex polytope, or shortly, polytope. If $P \subset \mathbb{R}^{n}$ is a convex polytope, then the set $\left\{x_{1}, x_{2}, \ldots, x_{k}\right\} \subset \mathbb{R}^{n}$ is a minimal representation of P, if
(i) $P=\operatorname{conv}\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}$, and
(ii) for any index i, we have $x_{i} \notin \operatorname{conv}\left\{x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{k}\right\}$.

Let us observe that every convex polytope has a minimal representation, which can be obtained by removing redundant points one by one from any represention. It is worth noting that the exposed points (that is, 0-dimensional faces) of a convex polytope are usually called vertices, and the ($n-1$)-dimensional faces of a convex polytope are called facets.
Theorem 1. Let $M=\left\{x_{1}, \ldots, x_{k}\right\} \subset \mathbb{R}^{n}$ be a minimal representation of the convex polytope P. Then the following are equivalent:
(i) $x \in M$,
(ii) $x \in \operatorname{ex}(P)$,
(iii) $x \in \operatorname{ext}(P)$.

Proof. First, we show that (i) implies (ii). Assume that $x \in M$. Then $x \notin \operatorname{conv}(M \backslash\{x\})$. Since $\operatorname{conv}(M \backslash\{x\})$ is compact and convex, there is a hyperplane H that strictly separates it from x. Let H_{0} be the hyperplane parallel to H and containing x. Then $H_{0} \cap M=\{x\}$ and H_{0} is a supporting hyperplane of $P=\operatorname{conv}(M)$. By Proposition 1 of the second lecture, then $H_{0} \cap P=H_{0} \cap \operatorname{conv}(M)=\operatorname{conv}\left(H_{0} \cap M\right)=\{x\}$, and hence, x is a vertex of P.

By Proposition 2 of the fifth lecture, for any closed, convex set K we have $\operatorname{ex}(K) \subseteq \operatorname{ext}(K)$. As M is compact, so is its convex hull; that is, (ii) implies (iii). We will show that (iii) implies (i). Let $x \in \operatorname{ext}(P)$. Now, if $x \in \operatorname{conv}(M \backslash\{x\})$ was true, then x could be written as a convex combination of points from $M \backslash\{x\}$. Choosing a minimal number of such points one can show that then x could be written as a relative interior point of a segment in P, which would contradict the condition that $x \in \operatorname{ext}(P)$.

Corollary 1. Every convex polytope has a unique minimal representation.

Remark 1. By Proposition 1 of the second lecture, if H is a supporting hyperplane of the convex set $\operatorname{conv}(X)$, then $H \cap \operatorname{conv}(X)=\operatorname{conv}(H \cap$ $X)$. From this it follows that every face of a convex polytope is a convex polytope, and also that every convex polytope has only finitely many faces.

The next two statements hold for the faces of every compact, convex sets.

Proposition 1. If $K \subset \mathbb{R}^{n}$ is a nonempty, compact, convex set, and F_{1}, \ldots, F_{m} are faces of K, then $F=\bigcap_{i=1}^{m} F_{i}$ is a face of K.

Proof. If $F=\emptyset$, then F is a face of K, and thus, we may assume that $F \neq \emptyset$, which implies that for every i, F_{i} is a proper face of K. Without loss of generality, we may assume that $o \in F$. Since F_{i} is a proper face of K, there is a linear functional $f_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ satisfying $f_{i}(x) \geq 0$ for all $x \in K$, and for which $f(x)=0$ for some $x \in K$ if and only if $x \in F_{i}$. Now, let $f=\sum_{i=1}^{m} f_{i}$. This function f is a linear functional, and if $x \in K$, then $f(x) \geq 0$. Assume that $x \in K$ and $f(x)=0$. From this, $\sum_{i=1}^{m} f_{i}(x)=0$, but since $f_{i}(x) \geq 0$ for any value of i, this is satisfied if and only if $f_{i}(x)=0$ for all values of i, or in other words, if $x \in F$. Thus, F is a face of K.

Proposition 2. Let $S_{2} \subseteq S_{1} \subset \mathbb{R}^{n}$ be compact, convex sets. If F is a face of S_{1}, then $F \cap S_{2}$ is a face of S_{2}.

Proof. If $F \cap S_{2}=\emptyset$, then it is clearly a face of S_{2}. Assume that $F \cap S_{2} \neq \emptyset$, which implies that F is a proper face of S_{1}. Let H be a supporting hyperplane of S_{1} satisfying $H \cap S_{1}=F$. Then H also supports S_{2}, and $H \cap S_{2}=\left(H \cap S_{1}\right) \cap S_{2}=F \cap S_{2}$, implying that $F \cap S_{2}$ is a face of S_{2}.

Our next proposition, which, in some sense, is the converse of the previous one, holds only for convex polytopes.

Proposition 3. Let F_{1} be a proper face of a convex polytope P, and let F_{2} be a face of F_{1}. Then F_{2} is a face of P.
Proof. If $F_{2}=\emptyset$, then the statement holds, and hence, we may assume that F_{2} is a proper face of F_{1}. According to our conditions, P has a supporting hyperplane H in \mathbb{R}^{n} satisfying $P \cap H=F_{1}$, and if F_{2} is a proper face of F_{1}, then there is a 'supporting hyperplane' G of F_{2} in H satisfying $G \cap F_{1}=F_{2}$. Observe that $\operatorname{dim} G=n-2$. As P is a convex polytope, only finitely many vertices of P are not elements of H, and thus, H can be rotated around G with a sufficiently small angle in a suitable direction such that the hyperplane H^{\prime} obtained by
this rotation is a supporting hyperplane of P, and, from amongst the vertices of P, it contains only those in F_{2}. But from this, it follows that $H^{\prime} \cap P=F_{2}$, yielding that F_{2} is a face of P.

Problem 1. Construct a compact, convex set $K \subseteq \mathbb{R}^{n}$ with the property that it has a proper face F_{1}, and F_{1} has a proper face F_{2} such that F_{2} is not a face of K.

We have seen that every compact, convex set can be obtained as the intersection of closed half spaces. Now we show that a convex polytope is the intersection of finitely many closed half spaces (namely those defined by its facets).

Definition 2. The intersection of finitely many closed half spaces is called a polyhedral set.

Theorem 2. Every convex polytope is a bounded polyhedral set.
Proof. Let $P \subset \mathbb{R}^{n}$ be a convex polytope. As P is compact, it is sufficient to prove that it is a polyhedral set. Without loss of generality, assume that $\operatorname{dim} P=n$, as every hyperplane is obtained as the intersection of the two closed half spaces it generates, and every affine subspace is obtained as the intersection of finitely many hyperplanes.

Let $M=\left\{x_{1}, \ldots, x_{k}\right\}$ be a minimal representation of P. Let the facets of P be F_{1}, \ldots, F_{m}, and denote by H_{i} and H_{i}^{+}the supporting hyperplane and the closed supporting half space defined by F_{i}, respectively. Then for any index i, we have $P \cap H_{i}=F_{i}$ and $P \subset H_{i}^{+}$. We show that $P=\bigcap_{i=1}^{m} H_{i}^{+}$.

Cearly, $P \subseteq \bigcap_{i=1}^{m} H_{i}^{+}$, and thus, by contradiction, we suppose that there is a point $x \in\left(\bigcap_{i=1}^{m} H_{i}^{+}\right) \backslash P$. Now, let $D=\bigcup \operatorname{aff}(\{x\} \cup C)$, where C runs over the family of the subsets of M of cardinality at most $(n-1)$. Then D is the union of finitely many affine subspaces of dimension at most $(n-1)$, and thus, we can choose a point $y \in \operatorname{int}(P)$ with $y \notin D$. But then, by $x \notin P$, the segment $[x, y]$ intersects the boundary of P, that is, there is a point $z \in(x, y)$ with $z \in \operatorname{bd}(P)$. We will show that z lies on a facet of P, but it does not lie on any lower dimensional face of P.

Assume that $z \in F$ for some j-dimensional face of P, where $0 \leq$ $j \leq n-2$. Then, by Carathéodory's theorem, z is contained in the convex hull of at most $(n-1)$ points of M, implying aff $\{x, z\} \in D$, which contradicts the assumption that $y \notin D$. By Corollary 4 of the first lecture, any boundary point of a compact, convex set is a point of a supporting hyperplane of the set, and thus, a point of a proper face of the set. Thus, by exclusion, z is a point of a facet F_{i} of P. But from
this, by $y \in \operatorname{int} P \subset \operatorname{int} H_{i}^{+}$, we obtain $x \notin H_{i}$, which contradicts our choice of y. This yields that $P=\bigcap_{i=1}^{m} H_{i}^{+}$.

Corollary 2. The boundary of every n-dimensional convex polytope $P \subset \mathbb{R}^{n}$ is the union of the facets of P.

