Midterm 1

1) Consider an $n \times n$ matrix M as a point of the Euclidean space $\mathbb{R}^{n^{2}}\left(M=\left[a_{i j}\right]\right.$ corresponds to the point $\left.\left(a_{11}, a_{12}, \ldots, a_{n n}\right)\right)$. Let \mathcal{F} be the family of $n \times n$ symmetric and positive semidefinite matrices. Prove that \mathcal{F} is a closed, convex set. (5 points) (Recall that a matrix A is positive semidefinite if for any vector $x \in \mathbb{R}^{n}, x^{T} A x \geq 0$.)
2) Prove that if m points are given in the plane such that for any three of them there is a closed unit disk $x+B^{2}$ containing them, then there is a closed unit disk containing all the points. (5 points)
3) Let C be a unit square, and let C^{\prime} be a rotated copy of C by $\frac{\pi}{4}$. Compute the perimeter and the volume of $C+C^{\prime}$. (5 points)
4) Let $S=[-p, p]$ be a closed segment in \mathbb{R}^{n}. Compute the support function of S. (5 points)
