14.04.2023

Convex Geometry

Midterm 1

1) Consider an $n \times n$ matrix M as a point of the Euclidean space \mathbb{R}^{n^2} $(M = [a_{ij}]$ corresponds to the point $(a_{11}, a_{12}, \ldots, a_{nn}))$. Let \mathcal{F} be the family of $n \times n$ symmetric and positive semidefinite matrices. Prove that \mathcal{F} is a closed, convex set. (5 points) (Recall that a matrix A is positive semidefinite if for any vector $x \in \mathbb{R}^n$, $x^T A x \ge 0$.)

2) Prove that if m points are given in the plane such that for any three of them there is a closed unit disk $x + B^2$ containing them, then there is a closed unit disk containing all the points. (5 points)

3) Let C be a unit square, and let C' be a rotated copy of C by $\frac{\pi}{4}$. Compute the perimeter and the volume of C + C'. (5 points)

4) Let S = [-p, p] be a closed segment in \mathbb{R}^n . Compute the support function of S. (5 points)