Midterm 2

1) Recall that a set $K \subseteq \mathbb{R}^{n}$ is called a convex cone if it is convex, and for any $x \in K$ and $\lambda \geq 0, \lambda x \in K$. Prove that a convex cone has at most one exposed point. (5 points)
2) Let $K \subset \mathbb{R}^{n}$ be a closed, convex set. Prove that for any $q \in \operatorname{bd}(K)$, there is a hyperplane H in \mathbb{R}^{n} separating q from K. (5 points)
3) Let $S \subset \mathbb{R}^{3}$ be the boundary of a regular tetrahedron. What is the Euler characteristic of S ? (5 points)
4) Consider the closed segment $A=\left\{(0,0, t) \in \mathbb{R}^{3}:-1 \leq\right.$ $t \leq 1\}$, and the circular disk $B=\left\{(x, y, 0) \in \mathbb{R}^{3}:(x-\right.$ $\left.1)^{2}+y^{2} \leq 1\right\}$. Let $K=\operatorname{conv}(A \cup B)$. Prove that K is a compact, convex set and compute ext (K). Is ext (K) closed? (5 points)
