Convex Geometry For students with mathematics major

Practice problems for the 1st midterm

Exercise 1. Consider an $A(n \times n)$ matrix as a point of the space $\mathbb{R}^{n^{2}}$. Let $\mathcal{S}, \mathcal{S}_{+}$and \mathcal{S}_{++} the set of $(n \times n)$ symmetric, positive definit and positive semidefinit matrices in $\mathbb{R}^{n^{2}}$, respectively. Prove that these sets are convex.

Exercise 2. Let $L, L^{\prime} \subset \mathbb{R}^{n}$ be linear subspaces of dimensions k and $n-k$, intersecting only in o, where $0 \leq k \leq n$.
a) Prove that then for any $p, q \in \mathbb{R}^{n}$, the affine subspaces $p+L$ and $q+L^{\prime}$ intersect in a unique point.
b) Let $F=p+L$ fixed. Define the function $\pi: \mathbb{R}^{n} \rightarrow F$ as $\pi(q)=q^{\prime}$, where $F \cap\left(q+L^{\prime}\right)=\left\{q^{\prime}\right\}$ (the map π is called projection onto F parallel to L^{\prime}). Prove that for any convex set $K \subseteq \mathbb{R}^{n}$ the set $\pi(K)$ is convex, and for any convex set $K^{\prime} \subseteq F$ the set $\pi^{-1}\left(K^{\prime}\right)$ is convex.

Exercise 3. Prove that if $K \subseteq \mathbb{R}^{n}$ is convex, closed and unbounded, then for every point of K there is a closed half line in K starting at this point.

Exercise 4. Let $K \subseteq \mathbb{R}^{n}$ be a closed, convex set. Prove that if K contains a closed half line starting at p, then for every $q \in K$ it contains the half line starting at q and having the same direction as that of L.

Exercise 5. Let $K \subseteq \mathbb{R}^{n}$ the convex hull of the points with all their coordinates equal to 1 or -1 (that is, K is an o-symmetric n-dimensional cube with edge length 2). Construct K as an intersection of closed half spaces.

Exercise 6. Let e_{1}, \ldots, e_{n} be the vectors of the usual orthonormal basis of the space \mathbb{R}^{n}. Let $K=\operatorname{conv}\left\{ \pm e_{1}, \pm e_{2}, \ldots, \pm e_{n}\right\}$ (that is, K is an o-symmetric, regular cross-polytope). Construct K as an intersection of closed half spaces.

Exercise 7. Let $X \subset \mathbb{R}^{n}$ be a compact set. Let H be an open half space that contains X. Show that then there is a closed half space $H_{0} \subset H$ that contains X. Is the statement true if X is not necessarily closed?

