
Convex Geometry tutorial

For students with mathematics major

Problem sheet 1 - A�ne and convex combinations - Solutions

Exercise 1. In the picture numbers denote lengths of segments. Express the points p, q, r as a�ne

combinations of the points u, v, w.
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Solution

Let x be the intersection point of the segment [u, v] and the straight line through [p, w]. By the

formula for the point dividing a segment in a given ratio we have x = 2
3u+

1
3v. By the same formula

we obtain p = 2
3x+ 1

3w = 4
9u+ 2

9v+
1
3w and p = 1

2w+ 1
2r, from which r = 2p−w = 8

9u+ 4
9v−

1
3w

follows. Finally, we know that q lies in the a�ne hulls of both the pair u,w and the pair p, v,
implying that it can be written as an a�ne combination of both pairs. Since these pairs are a�nely

independent, these combinations are unique. Thus,

q = αu+ (1−α)w = βp+ (1− β)v = β

(
4

9
u+

2

9
v +

1

3
w

)
+ (1− β)v =

4β

9
u+

(
1− 7β

9

)
v+

β

3
w,

from which α = 4β
9 , 1 − 7β

9 = 0, (1 − α) = β
3 . Solving these we have α = 4

7 , β = 9
7 , that is,

q = 4
7u+ 3

7w.

Exercise 2. Let F1 and F2 be a�ne subspaces of Rn. Assume that F1 ∩ F2 ̸= ∅. Prove that then
dimF1 + dimF2 − n ≤ dim(F1 ∩ F2).

Solution

Let p ∈ F1 ∩ F2. Then there are linear subspaces L1, L2 in Rn for which F1 = p + L1 and

F2 = p + L2. Let a1, . . . , ak be a basis of L1 ∩ L2. Since any linearly independent vector system

can be extended to a basis, there are some vectors b1, . . . , bm1 ∈ L1 and c1, . . . , cm2 ∈ L2 such that

a1, . . . , ak, b1, . . . , bm1 is a basis of L1, and a1, . . . , ak, c1, . . . , cm2 is a basis of L2. We will show

that these vectors are linearly independent. Indeed, if
∑k

i=1 αiai +
∑m1

i=1 βibi +
∑m2

i=1 γici = o for

suitable real numbers αi, βi, γi, then by rearrangement we have

k∑
i=1

αiai +

m1∑
i=1

βibi = −
m2∑
i=1

γici.

Observe that the left hand side is in F1 and the right hand side is in F2, implying that the

vector is in F1 ∩ F2, which yields that all coe�cients βi, γi are zero. But then
∑k

i=1 αiai = o,
from which, by the choice of the vectors ai, we have that all αis are zero. Thus, the vectors
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a1, . . . , ak, b1, . . . , bm1 , c1, . . . , cm2 are linearly independent in Rn, from which k + m1 + m2 ≤ n.
This implies the statement.

Exercise 3. Let K ⊆ Rn be a convex set. Prove that intK and clK are convex sets.

Solution

Let B = {x : ||x|| ≤ 1} denote the closed unit ball centered at the origin, and let p, q ∈⊆ int(K).
Then there is some ε > 0 such that p + εB, q + εB ⊆ K. Consider some point tp + (1 − t)q,
where t ∈ [0, 1]. We will show that tp + (1 − t)q + B ⊆ K. Indeed, if z ∈ B arbitrary, then

tp+(1− t)q+z = t(p+z)+(1− t)(q+z), where p+z ∈ p+B ⊂ K and q+z ∈ q+B ⊂ K, and by

the convexity of K we have tp+ (1− t)q+ z ∈ K. Thus, a neighborhood of the point tp+ (1− t)q
belongs to K, from which tp+ (1− t)q ∈ int(K).

Now, let p, q ∈⊆ cl(K), and t ∈ [0, 1]. We will show that tp+(1− t)q ∈ cl(K). By the de�nition
of closure there are sequences pm, qm in K for which pm → p és qm → q. But the convexity of K
yields tpm + (1− t)qm ∈ K for every m. On the other hand, the continuity of vector addition and

multiplication by a scalar yields tpm + (1− t)qm → tp+ (1− t)q, from which tp+ (1− t)q ∈ cl(K)
follows.

Exercise 4. Verify that the intersection of arbitrarily many convex sets is convex.

Solution

Let I be an index set, and Ki, i ∈ I convex sets. Let p, q ∈
⋂

i∈I Ki. Then p, q ∈ Ki for every

index i, from which the convexity of Ki implies [p, q] ⊆ Ki; that is, [p, q]∩i∈I Ki. Thus,
⋂

i∈I Ki is

convex.

Exercise 5. Let x1, . . . , xk ∈ Rn, és α1, α2, . . . , αk ∈ R. Prove that the set

P = {y ∈ Rn : ⟨y, xi⟩ ≤ αi, i = 1, 2, 3 . . . , k}

is convex. Is it true in case of in�nitely many inequalities?

Solution

Let x ∈ Rn and α ∈ R. We show that X = {y ∈ Rn : ⟨x, y⟩ ≤ α} is convex. Indeed, if p, q ∈ X,

then ⟨x, p⟩ ≤ α and ⟨x, q⟩ ≤ α. But then for every t ∈ [0, 1]

⟨x, tp+ (1− t)q⟩ = t⟨x, p⟩+ (1− t)⟨x, q⟩ ≤ tα+ (1− t)α = α,

implying tp+ (1− t)q ∈ X. But

P =
k⋃

i=1

{y ∈ Rn : ⟨y, xi⟩ ≤ αi},

and thus, P is the intersection of convex sets, and therefore it is convex. This argument can be

applied also when the number of inequalities is in�nite.

Exercise 6. Let S ⊆ Rn be arbitrary. Let the kernel of S be the set of points x with the property

that [x, y] ⊆ S holds for any y ∈ S. Prove that the kernel of S is convex.

Solution

Assume that p, q are points of the kernel of S. We need to prove that every point r ∈ [p, q] belongs
to the kernel of S; or in other words, for any point y ∈ S we have [r, y] ⊆ S. Let z ∈ [r, y]. By it

choice, z is a point of the triangle with vertices p, q, y; that is, there is some z0 ∈ [q, y] such that

z ∈ [p, z0]. But since p, q are points of the kernel of S, we have z0 ∈ S implying z ∈ S and thus

[r, y] ⊆ S. From this the convexity of the kernel of S readily follows.
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Exercise 7. Let K ⊆ Rn be convex, and let T : Rn → Rn be an invertible linear transformation.

Prove that the set T (K) = {T (x) : x ∈ K} is convex. Prove that for the set P de�ned in Exercise

5 there are vectors w1, w2, . . . , wk ∈ Rn and numbers β1, β2, . . . , βk ∈ R such that

T (P ) = {y ∈ Rn : ⟨y, wi⟩ ≤ βk, i = 1, 2, 2 . . . , k}.

Solution

Let y1, y2 ∈ T (K). We will show that [y1, y2] ⊂ T (K). Let us choose points x1, x2 for which

T (x1) = y1 and T (x2) = y2. If t ∈ [0, 1], then the linearity of T implies T (tx1 + (1 − t)x2) =
tT (x1) + (1− t)T (x2) = ty1 + (1− t)y2 ∈ T (K), which yields that T (K) is convex.

To prove the second statement, it is su�cient to show that for any x ∈ Rn, α ∈ R, the set

{T (y) : ⟨x, y⟩ ≤ α} can be written in the form {z : ⟨w, z⟩ ≤ β} for suitable w ∈ Rn β ∈ R. But

{T (y) : ⟨x, y⟩ ≤ α} = {z : ⟨x, T−1(z)⟩ ≤ α} = {z : ⟨
(
T−1

)T
(x), z⟩ ≤ α},

and hence, the statement follows with w =
(
T−1

)T
(x) and β = α.
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