Convex Geometry tutorial For students with mathematics major

Problem sheet 1 - Affine and convex combinations - Solutions

Exercise 1. In the picture numbers denote lengths of segments. Express the points p, q, r as affine combinations of the points u, v, w.

Solution

Let x be the intersection point of the segment $[u, v]$ and the straight line through $[p, w]$. By the formula for the point dividing a segment in a given ratio we have $x=\frac{2}{3} u+\frac{1}{3} v$. By the same formula we obtain $p=\frac{2}{3} x+\frac{1}{3} w=\frac{4}{9} u+\frac{2}{9} v+\frac{1}{3} w$ and $p=\frac{1}{2} w+\frac{1}{2} r$, from which $r=2 p-w=\frac{8}{9} u+\frac{4}{9} v-\frac{1}{3} w$ follows. Finally, we know that q lies in the affine hulls of both the pair u, w and the pair p, v, implying that it can be written as an affine combination of both pairs. Since these pairs are affinely independent, these combinations are unique. Thus,
$q=\alpha u+(1-\alpha) w=\beta p+(1-\beta) v=\beta\left(\frac{4}{9} u+\frac{2}{9} v+\frac{1}{3} w\right)+(1-\beta) v=\frac{4 \beta}{9} u+\left(1-\frac{7 \beta}{9}\right) v+\frac{\beta}{3} w$, from which $\alpha=\frac{4 \beta}{9}, 1-\frac{7 \beta}{9}=0,(1-\alpha)=\frac{\beta}{3}$. Solving these we have $\alpha=\frac{4}{7}, \beta=\frac{9}{7}$, that is, $q=\frac{4}{7} u+\frac{3}{7} w$.

Exercise 2. Let F_{1} and F_{2} be affine subspaces of \mathbb{R}^{n}. Assume that $F_{1} \cap F_{2} \neq \emptyset$. Prove that then $\operatorname{dim} F_{1}+\operatorname{dim} F_{2}-n \leq \operatorname{dim}\left(F_{1} \cap F_{2}\right)$.

Solution

Let $p \in F_{1} \cap F_{2}$. Then there are linear subspaces L_{1}, L_{2} in \mathbb{R}^{n} for which $F_{1}=p+L_{1}$ and $F_{2}=p+L_{2}$. Let a_{1}, \ldots, a_{k} be a basis of $L_{1} \cap L_{2}$. Since any linearly independent vector system can be extended to a basis, there are some vectors $b_{1}, \ldots, b_{m_{1}} \in L_{1}$ and $c_{1}, \ldots, c_{m_{2}} \in L_{2}$ such that $a_{1}, \ldots, a_{k}, b_{1}, \ldots, b_{m_{1}}$ is a basis of L_{1}, and $a_{1}, \ldots, a_{k}, c_{1}, \ldots, c_{m_{2}}$ is a basis of L_{2}. We will show that these vectors are linearly independent. Indeed, if $\sum_{i=1}^{k} \alpha_{i} a_{i}+\sum_{i=1}^{m_{1}} \beta_{i} b_{i}+\sum_{i=1}^{m_{2}} \gamma_{i} c_{i}=o$ for suitable real numbers $\alpha_{i}, \beta_{i}, \gamma_{i}$, then by rearrangement we have

$$
\sum_{i=1}^{k} \alpha_{i} a_{i}+\sum_{i=1}^{m_{1}} \beta_{i} b_{i}=-\sum_{i=1}^{m_{2}} \gamma_{i} c_{i} .
$$

Observe that the left hand side is in F_{1} and the right hand side is in F_{2}, implying that the vector is in $F_{1} \cap F_{2}$, which yields that all coefficients β_{i}, γ_{i} are zero. But then $\sum_{i=1}^{k} \alpha_{i} a_{i}=o$, from which, by the choice of the vectors a_{i}, we have that all α_{i} s are zero. Thus, the vectors
$a_{1}, \ldots, a_{k}, b_{1}, \ldots, b_{m_{1}}, c_{1}, \ldots, c_{m_{2}}$ are linearly independent in \mathbb{R}^{n}, from which $k+m_{1}+m_{2} \leq n$. This implies the statement.

Exercise 3. Let $K \subseteq \mathbb{R}^{n}$ be a convex set. Prove that int K and $\mathrm{cl} K$ are convex sets.

Solution

Let $B=\{x:\|x\| \leq 1\}$ denote the closed unit ball centered at the origin, and let $p, q \in \subseteq \operatorname{int}(K)$. Then there is some $\varepsilon>0$ such that $p+\varepsilon B, q+\varepsilon B \subseteq K$. Consider some point $t p+(1-t) q$, where $t \in[0,1]$. We will show that $t p+(1-t) q+B \subseteq K$. Indeed, if $z \in B$ arbitrary, then $t p+(1-t) q+z=t(p+z)+(1-t)(q+z)$, where $p+z \in p+B \subset K$ and $q+z \in q+B \subset K$, and by the convexity of K we have $t p+(1-t) q+z \in K$. Thus, a neighborhood of the point $t p+(1-t) q$ belongs to K, from which $t p+(1-t) q \in \operatorname{int}(K)$.

Now, let $p, q \in \subseteq \operatorname{cl}(K)$, and $t \in[0,1]$. We will show that $t p+(1-t) q \in \operatorname{cl}(K)$. By the definition of closure there are sequences p_{m}, q_{m} in K for which $p_{m} \rightarrow p$ és $q_{m} \rightarrow q$. But the convexity of K yields $t p_{m}+(1-t) q_{m} \in K$ for every m. On the other hand, the continuity of vector addition and multiplication by a scalar yields $t p_{m}+(1-t) q_{m} \rightarrow t p+(1-t) q$, from which $t p+(1-t) q \in \operatorname{cl}(K)$ follows.

Exercise 4. Verify that the intersection of arbitrarily many convex sets is convex.

Solution

Let I be an index set, and $K_{i}, i \in I$ convex sets. Let $p, q \in \bigcap_{i \in I} K_{i}$. Then $p, q \in K_{i}$ for every index i, from which the convexity of K_{i} implies $[p, q] \subseteq K_{i}$; that is, $[p, q] \cap_{i \in I} K_{i}$. Thus, $\bigcap_{i \in I} K_{i}$ is convex.

Exercise 5. Let $x_{1}, \ldots, x_{k} \in \mathbb{R}^{n}$, és $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k} \in \mathbb{R}$. Prove that the set

$$
P=\left\{y \in \mathbb{R}^{n}:\left\langle y, x_{i}\right\rangle \leq \alpha_{i}, i=1,2,3 \ldots, k\right\}
$$

is convex. Is it true in case of infinitely many inequalities?

Solution

Let $x \in \mathbb{R}^{n}$ and $\alpha \in \mathbb{R}$. We show that $X=\left\{y \in \mathbb{R}^{n}:\langle x, y\rangle \leq \alpha\right\}$ is convex. Indeed, if $p, q \in X$, then $\langle x, p\rangle \leq \alpha$ and $\langle x, q\rangle \leq \alpha$. But then for every $t \in[0,1]$

$$
\langle x, t p+(1-t) q\rangle=t\langle x, p\rangle+(1-t)\langle x, q\rangle \leq t \alpha+(1-t) \alpha=\alpha
$$

implying $t p+(1-t) q \in X$. But

$$
P=\bigcup_{i=1}^{k}\left\{y \in \mathbb{R}^{n}:\left\langle y, x_{i}\right\rangle \leq \alpha_{i}\right\}
$$

and thus, P is the intersection of convex sets, and therefore it is convex. This argument can be applied also when the number of inequalities is infinite.

Exercise 6. Let $S \subseteq \mathbb{R}^{n}$ be arbitrary. Let the kernel of S be the set of points x with the property that $[x, y] \subseteq S$ holds for any $y \in S$. Prove that the kernel of S is convex.

Solution

Assume that p, q are points of the kernel of S. We need to prove that every point $r \in[p, q]$ belongs to the kernel of S; or in other words, for any point $y \in S$ we have $[r, y] \subseteq S$. Let $z \in[r, y]$. By it choice, z is a point of the triangle with vertices p, q, y; that is, there is some $z_{0} \in[q, y]$ such that $z \in\left[p, z_{0}\right]$. But since p, q are points of the kernel of S, we have $z_{0} \in S$ implying $z \in S$ and thus $[r, y] \subseteq S$. From this the convexity of the kernel of S readily follows.

Exercise 7. Let $K \subseteq \mathbb{R}^{n}$ be convex, and let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be an invertible linear transformation. Prove that the set $T(K)=\{T(x): x \in K\}$ is convex. Prove that for the set P defined in Exercise 5 there are vectors $w_{1}, w_{2}, \ldots, w_{k} \in \mathbb{R}^{n}$ and numbers $\beta_{1}, \beta_{2}, \ldots, \beta_{k} \in \mathbb{R}$ such that

$$
T(P)=\left\{y \in \mathbb{R}^{n}:\left\langle y, w_{i}\right\rangle \leq \beta_{k}, i=1,2,2 \ldots, k\right\} .
$$

Solution

Let $y_{1}, y_{2} \in T(K)$. We will show that $\left[y_{1}, y_{2}\right] \subset T(K)$. Let us choose points x_{1}, x_{2} for which $T\left(x_{1}\right)=y_{1}$ and $T\left(x_{2}\right)=y_{2}$. If $t \in[0,1]$, then the linearity of T implies $T\left(t x_{1}+(1-t) x_{2}\right)=$ $t T\left(x_{1}\right)+(1-t) T\left(x_{2}\right)=t y_{1}+(1-t) y_{2} \in T(K)$, which yields that $T(K)$ is convex.

To prove the second statement, it is sufficient to show that for any $x \in \mathbb{R}^{n}, \alpha \in \mathbb{R}$, the set $\{T(y):\langle x, y\rangle \leq \alpha\}$ can be written in the form $\{z:\langle w, z\rangle \leq \beta\}$ for suitable $w \in \mathbb{R}^{n} \beta \in \mathbb{R}$. But

$$
\{T(y):\langle x, y\rangle \leq \alpha\}=\left\{z:\left\langle x, T^{-1}(z)\right\rangle \leq \alpha\right\}=\left\{z:\left\langle\left(T^{-1}\right)^{T}(x), z\right\rangle \leq \alpha\right\}
$$

and hence, the statement follows with $w=\left(T^{-1}\right)^{T}(x)$ and $\beta=\alpha$.

