
Convex Geometry tutorial

For students with mathematics major

Problem sheet 2 - Convex hull, theorems of Radon and

Carathéodory - Solutions

Exercise 1. Prove that if A ⊆ B, then convA ⊆ convB.
Solution

If a convex set contains B, then it clearly contains A, and thus, the statement follows from the

de�nition of convex hull.

Exercise 2. A set S ⊆ Rn is called a convex cone if it is convex and for every x ∈ S the points

λx, λ ≥ 0 are elements of S. Following the de�nition of convex combination and convex hull, de�ne

the conic combination of points and the conic hull of a set. Show that a conic hull is a convex cone,

and it coincides with the set of the conic combinations of the �nite subsets of the set.

Solution

Let us de�ne the conic hull of a set S as the intersection of all convex cones containing S. We

show that this set is a convex cone. Since a convex cone is convex, it is su�cient to show that if

x is contained in the intersection of all convex cones containing S, then the same holds for all λx,
λ ≥ 0. But by the de�nition of convex cones it is satis�ed for all convex cones containing S, and
hence it is satis�ed for the intersection of these sets.

Let us de�ne a conic combination of the points p1, . . . , pk ∈ Rn as the points
∑k

i=1 αipi, where
αi ≥ 0 for all is. Let C denote the set of all conic combinations of the �nite subsets of S, and
let C ′ denote the conic hull of S. Since a convex combination of conic combinations is a conic

combination, we have that C is convex. Furthermore, if λ ≥ 0, then λ times a conic combination is

a conic combination of the same points, implying that C is a convex cone. Thus, C ′ ⊆ C. On the

other hand, observe that as C ′ is convex it contains the convex combinations of all �nite subsets

of S. But a conic combination of some points of S can be written as a convex combination of the

same points, multiplied by some suitably chosen λ ≥ 0. Thus, the fact that C ′ is a convex cone

yields that C ′ contains the conic combinations of the �nite subsets of S; that is, C ⊂ C ′.

Exercise 3. A set K ⊂ Rn is called locally convex if for every p ∈ K there is some ρ > 0 such

that the intersection of K with the ball B(p, ρ) of radius ρ and center p is convex. Is it true that

every locally convex set is convex?

Solution

The answer is no. As examples for locally convex but not convex sets we can take any �nite point

set.

Exercise 4. Give an example for a closed set A ⊆ R2 whose convex hull is not closed.

Solution

Let A = {(x, 0) ∈ R2 : x ∈ R} ∪ {(0, 1)}. Then A is a closed set, but conv(A) = {(x, y) ∈ R2 : x ∈
R, 0 ≤ y < 1} ∪ {(0, 1)}, which is not closed.

Exercise 5. Prove that the convex hull of an open set is open.

Solution

Let A be open, and let p ∈ conv(A). Then there are some points p1, . . . , pk ∈ A and real numbers

αi ≥ 0,
∑k

i=1 αi = 1 such that p =
∑k

i=1 αipi. Since A is open, there is some ρ > 0 with the property
that A contains the closed ball of radius ρ centered at pi for all values of i. In other words, there is

some ρ > 0 such that for every x with ||x|| ≤ ρ and every value of i, we have pi + x ∈ A. But then
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∑k
i=1 αi(pi + x) =

(∑k
i=1 αipi

)
+ x = p+ x, from which we have p+ x ∈ conv(A). Thus, conv(A)

contains the closed ball of radius ρ and center p. Since p ∈ conv(A) was arbitrary, this implies that

conv(A) is open.

Exercise 6. Let S ⊂ Rn be a set consisting of n + 2 points in general position (i.e. any n + 1
of the points is a�nely independent). Prove that then S can be uniquely decomposed into two

disjoint subsets S1, S2 satisfying convS1 ∩ convS2 6= ∅. In addition, prove that in this case the

intersection is a singleton.

Megoldás

Let S = {p1, p2, . . . , pn+2}, where every (n+1)-element subset of S is a�nely independent.Then the

homogeneous system of linear equations
∑n+2

i=1 αipi = o,
∑n+2

i=1 αi = 0 (containing n+ 1 equations

and n + 2 variables) has a nontrivial solution, which, by the Kronecker-Capelli theorem, can be

given using exactly one free parameter; that is, there is some vector (β1, β2, . . . , βn+2) with not all

βis equal to zero such that the solutions consists of the vectors αi = tβi, t ∈ R. If there was some

i, for which βi = 0, then by Theorem 1 in the �rst lecture the remaining n + 1 points would be

a�nely dependent, implying that no βi is zero. Let U = {i : βi > 0, V = {i : βi < 0}, and for

every i let γi = −βi. Then
∑

i∈U βi =
∑

i∈V γi.
Now we prove the statement. Assume that the index set {1, 2 . . . , n + 2} has a decomposition

into disjoint sets U , V , and there are some coe�cients αi ≥ 0, δi ≥ 0,
∑

i∈U αi =
∑

i∈V βi = 1 that

satisfy the conditions
∑

i∈U αipi =
∑

i∈V δipi. Then, introducing the notation αi = −δi for i ∈ V ,
the above point can be assigned to a solution of the system of the linear equations

∑n+2
i=1 αi = 0,∑n+2

i=1 αipi = o. But according to the description of the solution in the previous paragraph, both

the sets U, V and the coe�cients assigned to such a decomposition, are determined uniquely.

Exercise 7. ∗ Let σ ∈ Sn be a permutation. De�ne the permutation matrix assigned to σ by

Aσ := (aij), where

aij =

{
1, if σ(i) = j

0, if σ(i) 6= j.

A matrix B = (bij) is called doubly stochastic, if its entries are nonnegative, and the sum of the

entries in each row and each column is one. Prove that the convex hull of the set of permutation

matrices in Rn2
is the set of doubly stochastic matrices. (Hint: try to reduce the problem to Hall's

theorem for bipartite graphs)

Solution

Let S denote the set of permutation matrices and C denote the set of doubly stochastic matrices

in Rn2
. We need to show that conv(S) = C. First we prove that the C is convex. Let A = (aij)

and B = (cij) be doubly stochastic, and consider the matrix C = (cij) = tA + (1 − t)B for some

t ∈ [0, 1]. Then, clearly, the elements of C are nonnegative. The sum of the elements of C in the

ith row is

n∑
j=1

cij =

n∑
j=1

(taij + (1− t)bij) = t

n∑
j=1

aij + (1− t)
n∑
j=1

bij = t · 1 + (1− t) · 1 = 1,

implying that C is doubly stochastic. By the de�nition of convex sets, this yields that C is convex.

On the other hand, any permutation matrix is doubly stochastic, and thus, S ⊆ C, imply-

ing that conv(S) ⊆ C. Thus, we need to show that every element of C is a convex combination

of permutation matrices. Let D = (dij) be a doubly stochastic matrix di�erent from any per-

mutation matrix. We de�ne a weighted graph G = G(V,E) as follows. The vertices of G are

V = {r1, . . . , rn, c1, . . . , cn} (corresponding to the rows and columns of D), and the edges of G are

the pairs {ri, cj} with dij 6= 0, and in this case the weight w(ri, cj) of {ri, cj} is dij . Clearly, G is
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a bipartite graph. Let R = {r1, . . . , rn} and C = {c1, . . . , cn}. For any A ⊆ V let the neighborhood

N(A) of A be de�ned as the vertices of G connected to at least one vertex of A. Then we have

N(A) ⊆ C for any A ⊆ R and N(A) ⊆ R for any A ⊆ C. Furthermore, if A ⊆ R, then∑
ri∈A,cj∈N(A)

w(ri, cj) =
∑
ri∈A

∑
cj∈N({ri})

w(ri, cj) =
∑
ri∈A

∑
cj∈N({ri})

dij =
∑
ri∈A

1 = |A|,

and the same statement holds if A ⊆ C. On the other hand, for any A ⊆ R or A ⊆ C, we have

A ⊆ N(N(A)) by the de�nition of neighborhood. Thus, assuming that A ⊆ R,

|N(A)| =
∑

cj∈N(A),ri∈N(N(A))

w(ri, cj) ≥
∑

cj∈N(A),ri∈A

w(ri, cj) = |A|,

and the same inequality holds if A ⊆ C. Hence, we may apply Hall's theorem for bipartite graphs

which states that in this case G has a perfect matching: there is a permutation σ of {1, . . . , n} such
that {ri, cσ(i)} is an edge of G. Let P be the n × n permutation matrix de�ned by σ. Note that

by our construction, for every value of i, diσ(i) > 0, and since D 6= P , we have diσ(i) < 1 for some

value of i. For any t ∈ [0, 1) let D(t) be the matrix de�ned by D = (1 − t)D(t) + tP , or in other

words, let D(t) = 1
1−tD −

t
1−tP . Observe that D(0) = D and that D(t) has a negative entry if t

is su�ciently close to 1. Thus, there is a maximal value t0 such that D(t0) has only nonnegative

entries, which implies by the continuity of the entries of D(t) that for all ij, dij = 0 implies that

the corresponding entry of D(t0) is zero, and also that some other entry of D(t0) is also zero. On

the other hand, D(t0) is a doubly stochastic matrix by our construction, and hence, D can be

written as the convex combination of a permutation matrix and a doubly stochastic matrix with

strictly more zero entries. By continuing this process, we can write D as a convex combination of

permutation matrices.
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