Convex Geometry tutorial
For students with mathematics major

Problem sheet 3 - Helly’s theorem - Solutions

Exercise 1. Show that the finite version of Helly’s theorem does not hold for nonconvex sets.
Solution.

Let k be an arbitrary positive integer, A = {p1,...,pr} C R"™ be an arbitrary point set, and

A = A\ {pr}. Then, removing any of the sets Ay, the intersetion of the rest is nonempty, but the

intersection of all sets is empty.

Exercise 2. Give an example of a family of infinitely many closed, convex sets in R™ with the

property that any n -+ 1 elements of the set intersect, but the intersection of all elements is empty.
Solution.

Let Ay = {(x1,...,2y) € R" : 1 > k}, where k is an arbitrary positive integer. Then the sets Ay

have an empty intersection, but any finitely many of them have a nonempty intersection.

Exercise 3. Give an example of a family of finitely many convex sets in the plane such that no
two of them are disjoint, but the intersection of all of them is empty.

Solution.
Let this family consist of finitely many mutually non-parallel straight lines.

Exercise 4. Let F be a finite family of convex sets in R”, and let L be an affine subspace in
R™. Prove that if for any at most n + 1 elements of F a translate of L intersects all elements, then
there is a translate of L that intersects all elements of F.

Solution.
As affine subspaces are convex, this exercise is a special case of the part of the next exercise about
intersections.

Exercise 5. Let F be a finite family of convex sets and let C' be a convex set in R™. Prove
that if, for any at most (n + 1) elements of F, there is a translate of C' that intersects/contains/is
contained in all of them, then then there is a translate of C that intersects/contains/is contained
in all elements of F.
Solution.

First, we show the statement for intersection. Let F = {Kj, Ko,..., Ky} be a finite family of
convex sets in R™, and let C' C R™ be a convex set such that a suitable translate of C intersects
any at most n + 1 elements of F. For every subscript ¢ let X; denote the set of translation vectors
x € R™ such that x + C intersects K;, that is,

X, ={zeR": (z+C)NK; #0}.

According to the conditions, for any 1 < i1,49,...,i,4+1 < m (not necessarily distinct) indices,
we have ﬂ?ill Xi; # 0. We show that X; is convex for every i. Let x1,72 € X;. Then, by our
conditions, (x1 + C) N K; # 0 # (x9 + C) N K;, that is, there are some y1,y2 € C such that
1+ y1,x2+y2 € K;. But as C and K; are convex, for any ¢ € [0, 1] we have ty; + (1 —t)y2 € C' és
te1+(1—t)za+ty1 +(1—t)y2 € K;; that is, to1+(1—t)za -+t +(1—t)y2 € (tr1+(1—t)z2+C)NK; #
(), from which it follows that ¢tz + (1 — t)ze € X;, and hence, X; is convex. Thus, we can apply
the finite version of Helly’s theorem for the convex sets X;, which yields (%, X; # 0.

In the other two cases we can apply a similar consideration. Indeed, let

Vi=={zeR":(z+C)CK;}, and Z;=={zxecR":K;C(z+C)}.



If for any at most n 4+ 1 elements of F a translate of C contains all of them, then for any 1 <
11,12, -+, int1 < m (not necessarily distinct) indices ﬂ;”;“ll Yi, # 0 (ﬂ?;rll Z;; # 0) is satisfied.
Thus, it is sufficient to prove that Y; and Z; are convex.

If 1,29 € Y}, then for every point y € C' we have x1 + y,z9 + y € K;, and therefore by
the convexity of K; for any ¢t € [0,1] the containment relation t(x; + y) + (1 — t)(z2 + y) =
tr1+ (1 —t)za+y € K, is satisfied, yielding tx; + (1 —t)ze € Y; and the convexity of Y;. Similarly,
if x1, 29 € Z;, then for every point y € K; we have x1 + y, 22 + y € C, and thus by the convexity
of C, for every t € [0,1] we have t(z1 +y) + (1 —t)(z2 + y) = te1 + (1 — t)xze + y € C, implying
txy + (1 —t)zy € Z; and the convexity of Z;. Thus, the second and the third statement also follows
from the the finite version of Helly’s theorem.

Exercise 6. *(Krasnosselsky’s art gallery theorem) Let S C R™ be a compact set of at least n+ 1

points, and assume that for any p1,pa,...,pnt1 there is some g € S from which every p; is visible,
or in other words, [p1,q],...,[pn+1,q] € S. Prove that then S is starlike, that is, it contains a point
from which every point of S is visible.

Solution.
In the solution we denote by d(A, B) the distance of the sets A, B C R", defined as inf{||a — bl :
a€ Abe B}

For any point = € S, let V, denote the set of the points of S visibel from x, that is, if
q € Vg, then [q,z] € S. As S is compact, V, is compact for any x, implying that also conv(V})
is compact. Thus, we can apply the infinite version of Helly’s theorem, which yields that there is
some y € [,cgconv(Vy).

By contradiction, assume that y ¢ V, for some point x € S, that is, there is some z € [z,y],
z ¢ S. By the compactness of S there is a point 2’ on this segment closest to x in S. Let z” the
point of [z, 2] satisfying |[z” — /|| = 3d({z},S). Since [2”,2] and S are disjoint, compact sets,
there is some u € [2”, 2] and v € S for which ||u — v|| = d([z”, 2], S) > 0. Let H, denote the closed
half space not containing u, and bounded by the hyperplane through v and perpendicular to [u, v].
Then, by the choice of u,v, S C H,. But then convV, C H,, and hence y € H, is also satisfied.
On the other hand, x € S implies x € H,, and thus, [z,y] C H,, which contradicts the choice of u.



