
Convex Geometry tutorial

For students with mathematics major

Problem sheet 3 - Helly's theorem - Solutions

Exercise 1. Show that the �nite version of Helly's theorem does not hold for nonconvex sets.
Solution.

Let k be an arbitrary positive integer, A = {p1, . . . , pk} ⊂ Rn be an arbitrary point set, and
Ak = A \ {pk}. Then, removing any of the sets Ak, the intersetion of the rest is nonempty, but the
intersection of all sets is empty.

Exercise 2. Give an example of a family of in�nitely many closed, convex sets in Rn with the
property that any n+1 elements of the set intersect, but the intersection of all elements is empty.

Solution.
Let Ak = {(x1, . . . , xn) ∈ Rn : x1 ≥ k}, where k is an arbitrary positive integer. Then the sets Ak

have an empty intersection, but any �nitely many of them have a nonempty intersection.

Exercise 3. Give an example of a family of �nitely many convex sets in the plane such that no
two of them are disjoint, but the intersection of all of them is empty.

Solution.
Let this family consist of �nitely many mutually non-parallel straight lines.

Exercise 4. Let F be a �nite family of convex sets in Rn, and let L be an a�ne subspace in
Rn. Prove that if for any at most n+1 elements of F a translate of L intersects all elements, then
there is a translate of L that intersects all elements of F .

Solution.
As a�ne subspaces are convex, this exercise is a special case of the part of the next exercise about
intersections.

Exercise 5. Let F be a �nite family of convex sets and let C be a convex set in Rn. Prove
that if, for any at most (n+ 1) elements of F , there is a translate of C that intersects/contains/is
contained in all of them, then then there is a translate of C that intersects/contains/is contained
in all elements of F .

Solution.
First, we show the statement for intersection. Let F = {K1,K2, . . . ,Km} be a �nite family of
convex sets in Rn, and let C ⊆ Rn be a convex set such that a suitable translate of C intersects
any at most n+ 1 elements of F . For every subscript i let Xi denote the set of translation vectors
x ∈ Rn such that x+ C intersects Ki, that is,

Xi := {x ∈ Rn : (x+ C) ∩Ki 6= ∅}.

According to the conditions, for any 1 ≤ i1, i2, . . . , in+1 ≤ m (not necessarily distinct) indices,
we have

⋂n+1
j=1 Xij 6= ∅. We show that Xi is convex for every i. Let x1, x2 ∈ Xi. Then, by our

conditions, (x1 + C) ∩ Ki 6= ∅ 6= (x2 + C) ∩ Ki, that is, there are some y1, y2 ∈ C such that
x1 + y1, x2 + y2 ∈ Ki. But as C and Ki are convex, for any t ∈ [0, 1] we have ty1 +(1− t)y2 ∈ C és
tx1+(1−t)x2+ty1+(1−t)y2 ∈ Ki; that is, tx1+(1−t)x2+ty1+(1−t)y2 ∈ (tx1+(1−t)x2+C)∩Ki 6=
∅, from which it follows that tx1 + (1 − t)x2 ∈ Xi, and hence, Xi is convex. Thus, we can apply
the �nite version of Helly's theorem for the convex sets Xi, which yields

⋂m
i=1Xi 6= ∅.

In the other two cases we can apply a similar consideration. Indeed, let

Yi =:= {x ∈ Rn : (x+ C) ⊆ Ki}, and Zi =:= {x ∈ Rn : Ki ⊆ (x+ C)}.
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If for any at most n + 1 elements of F a translate of C contains all of them, then for any 1 ≤
i1, i2, . . . , in+1 ≤ m (not necessarily distinct) indices

⋂n+1
j=1 Yij 6= ∅ (

⋂n+1
j=1 Zij 6= ∅) is satis�ed.

Thus, it is su�cient to prove that Yi and Zi are convex.
If x1, x2 ∈ Yi, then for every point y ∈ C we have x1 + y, x2 + y ∈ Ki, and therefore by

the convexity of Ki for any t ∈ [0, 1] the containment relation t(x1 + y) + (1 − t)(x2 + y) =
tx1+(1− t)x2+ y ∈ Ki is satis�ed, yielding tx1+(1− t)x2 ∈ Yi and the convexity of Yi. Similarly,
if x1, x2 ∈ Zi, then for every point y ∈ Ki we have x1 + y, x2 + y ∈ C, and thus by the convexity
of C, for every t ∈ [0, 1] we have t(x1 + y) + (1 − t)(x2 + y) = tx1 + (1 − t)x2 + y ∈ C, implying
tx1+(1− t)x2 ∈ Zi and the convexity of Zi. Thus, the second and the third statement also follows
from the the �nite version of Helly's theorem.

Exercise 6.
∗(Krasnosselsky's art gallery theorem) Let S ⊂ Rn be a compact set of at least n+1

points, and assume that for any p1, p2, . . . , pn+1 there is some q ∈ S from which every pi is visible,
or in other words, [p1, q], . . . , [pn+1, q] ⊆ S. Prove that then S is starlike, that is, it contains a point
from which every point of S is visible.

Solution.
In the solution we denote by d(A,B) the distance of the sets A,B ⊂ Rn, de�ned as inf{||a − b|| :
a ∈ A, b ∈ B}.

For any point x ∈ S, let Vx denote the set of the points of S visibel from x, that is, if
q ∈ Vx, then [q, x] ⊆ S. As S is compact, Vx is compact for any x, implying that also conv(Vx)
is compact. Thus, we can apply the in�nite version of Helly's theorem, which yields that there is
some y ∈

⋂
x∈S conv(Vx).

By contradiction, assume that y /∈ Vx for some point x ∈ S, that is, there is some z ∈ [x, y],
z /∈ S. By the compactness of S there is a point x′ on this segment closest to x in S. Let x′′ the
point of [x′, z] satisfying ||x′′ − x′|| = 1

2d({z}, S). Since [x′′, z] and S are disjoint, compact sets,
there is some u ∈ [x′′, z] and v ∈ S for which ||u− v|| = d([x′′, z], S) > 0. Let Hv denote the closed
half space not containing u, and bounded by the hyperplane through v and perpendicular to [u, v].
Then, by the choice of u, v, S ⊂ Hv. But then conv Vv ⊂ Hv, and hence y ∈ Hv is also satis�ed.
On the other hand, x ∈ S implies x ∈ Hv, and thus, [x, y] ⊂ Hv, which contradicts the choice of u.
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