Convex Geometry tutorial for students with mathematics major

Problem sheet 4 - Hyperplanes, Minkowski sum, separation Solutions

Exercise 1. Prove that if A and B are two disjoint, convex sets in \mathbb{R}^{n}, then there are disjoint convex sets A^{\prime}, B^{\prime} in \mathbb{R}^{n} satisfying $A \subset A^{\prime}, B \subset B^{\prime}$, and $A^{\prime} \cup B^{\prime}=\mathbb{R}^{n}$.

Solution

We prove the statement by induction on n. Let $n=1$. If, e.g. $L=\emptyset$, then $K^{*}=\mathbb{R}^{1}$ and $L^{*}=\emptyset$ satisfy the required conditions. If K and L are not empty, then by the Separation Theorem there is a point p such that hogy one of the two closed half lines starting at p contains K, and the other one contains L. Let these two half lines be E_{1} and E_{2} such that $K \subseteq E_{1}$ and $L \subseteq E_{2}$. Since K and L are disjoint, we can assume that e.g. $p \notin L$. Then $K^{*}=E_{1}$ and $L^{*}=E_{2} \backslash\{p\}$ satisfy the required conditions.

Now, assume that the statement holds in \mathbb{R}^{k} for any $k<n$. If e.g. $L=\emptyset$, then $K^{*}=\mathbb{R}^{n}$ és $L^{*}=\emptyset$ satisfy the conditions. In the opposite case, as K and L are disjoint, convex sets, there is a hyperplane H that (not necessarily strictly) separates K and L. Let the two open half spaces bounded by H be denoted by H_{+}and H_{-}, where $K \subseteq H \cup H_{+}$and $L \subseteq H \cup H_{-}$. The sets $H \cap K$ and $H \cap L$ are convex, being the intersections of convex sets, and they are disjoint. Since H is an ($n-1$)-dimensional Euclidean space, we may apply the induction hypothesis, and obtain that there are disjoint, convex sets K_{H}^{*} and L_{H}^{*}, for which $H \cap K \subseteq K_{H}^{*}, H \cap L \subseteq L_{H}^{*}$, and $H=K_{H}^{*} \cup L_{H}^{*}$. Let $K^{*}=H_{+} \cup K_{H}^{*}$ and $L^{*}=H_{-} \cup L_{H}^{*}$. These sets are disjoint, and their union is \mathbb{R}^{n}. We show that they are convex.

CLearly, it is sufficient to show that K^{*} is convex. Let $p, q \in K^{*}$. If $p, q \in K_{H}^{*}$, then by the convexity of K_{H}^{*} we have $[p, q] \subseteq K_{H}^{*} \subset K^{*}$. Let, e.g. $p \in H_{+}$. Then for any point $r \in[p, q], r \neq q$ we have $r \in H_{1} \subset K^{*}$, therefore $[p, q] \subseteq K^{*}$, implying that K^{*} is convex. Thus, K^{*} and L^{*} satisfy the conditions of the exercise.

Exercise 2. Describe all decompositions of the 3-dimensional Euclidean space into the union of two disjoint, convex sets. What is the situation in \mathbb{R}^{n} ?

Solution

Let us call a set X in \mathbb{R}^{n} a suitable set, if $X=\emptyset, X=\mathbb{R}^{n}$, or for some $1 \leq k \leq n$ there are sets $H_{+}^{1}, H_{+}^{2}, \ldots, H_{+}^{k}, H^{k}$ such that
(i) H_{+}^{1} is an open half space in $\mathbb{R}^{n}, H_{+}^{2}$ is an open half space in the boundary of H_{+}^{1}, and in general, for every $2 \leq m \leq k, H_{+}^{m}$ is an open half space in the relative boundary of H_{+}^{m-1},
(ii) H^{k} is the relative boundary of H_{+}^{k},
(iii) $X=\bigcup_{i=1}^{k} H_{+}^{i}$ (first type suitable set), or $X=H_{k} \cup \bigcup_{i=1}^{k} H_{+}^{i}$ (second type suitable set).
by the argument used in the previous exercise, every suitable set is convex, and the complement of a first type suitable set is a second type suitable set, and vice versa. Therefore any decomposition of \mathbb{R}^{n} into the union of two suitable sets satisfies the conditions. We show that if K and L are convex sets whose disjoint union is \mathbb{R}^{n}, then K and L are suitable sets.

We prove the statement by induction on n. We may assume that K and L are not empty. Applying the idea of the solution of Exercise 1, we have that in this case one of K and L is a closed half line and the other one is an open half line, which are suitable sets. Assume that the statement is true for the decompositions of \mathbb{R}^{n-1}, and let K, L be disjoint, convex sets satisfying $K \cup L=\mathbb{R}^{n}$.

The sets $\emptyset, \mathbb{R}^{n}$ satisfy the conditions. If K and L are not this pair, then by the Separation Theorem there is a hyperplane H^{1} separating K and L, and thus, suitably labelling the open half planes H_{+}^{1}, H_{-}^{1} bounded by H^{1}, we have $K \subseteq H^{1} \cup H_{+}^{1}$ and $L \subseteq H^{1} \cup H_{-}^{1}$, from which $H_{+}^{1} \subseteq K$ and $H_{-}^{1} \subseteq L$. Let $K^{1}=K \cap H^{1}$ and $L^{1}=L \cap H^{1}$. Then $K=K^{1} \cup H_{+}^{1}$ and $L=L^{1} \cup H_{-}^{1}$. On the other hand, K^{1} and L^{1} are disjoint, convex sets, and $K^{1} \cup L^{1}=H^{1}$, which, by the induction hypothesis, implies that K^{1} and L^{1} are suitable sets in H^{1}. But then K and L are suitable sets in \mathbb{R}^{n}.

Exercise 3. (a) Let T be a regular triangle. What is $T-T$? What is $T+T$?
(b) For any compact set $T \subset \mathbb{R}^{n}$ and positive integer k let $T_{k}=\frac{\overbrace{T+T+\ldots+T}^{k}}{k}$. Prove that if T is convex and $k \in \mathbb{Z}^{+}$, then

$$
T_{k}=T
$$

If T is not necessarily convex, what is the relationship between T, T_{k} and $\operatorname{conv}(T)$?
(c)* Prove that if $T \subset \mathbb{R}^{n}$ is compact and convex and $k \in \mathbb{Z}^{+}$, then

$$
V\left(T_{k}\right) \leq V\left(T_{k+1}\right),
$$

where $V(\cdot)$ denotes n-dimensional volume (Lebesgue measure). What happens if T is not necessarily convex?

Solution

a) Observe that for any $A, B \subset \mathbb{R}^{n}$ and $x, y \in \mathbb{R}^{n}$ we have $(x+A)+(y+B)=(x+y)+(A+B)$, that is, the vector sum of translates of two given sets is a translate of the vector sum of the sets. Thus, up to translation, $T-T$ is independent of the choice of the origin, and we may assume that one vertex of T is o, implying that $-T$ is the reflection of T about that vertex. On the other hand, for any sets $A, B \subset \mathbb{R}^{n}, A+B=\bigcup_{a \in A}(\{a\}+B)$, that is, $T-T$ can be obtained by sliding $-T$ along all points of T, and taking the union of all these translates of $-T$. In this waay one can see that $T-T$ is a regular hexagon centered at o, with edge length equal to the edge length of T and $-T$, and containing one of the edges of both these triangles in its boundary. We obtain similarly that if o is a vertex of T, then $T+T=2 T$, that is, $T+T$ coincides with the image of T under the central similarity of center o and ratio 2 . If it is not true, then T can be written in the form $T=x+T_{0}$, where a vertex of T_{0} is o. But then $T+T=\left(x+T_{0}\right)+\left(x+T_{0}\right)=2 x+\left(T_{0}+T_{0}\right)=2 x+2 T_{0}=2 T$, and the previous statement holds also in the general case, that is, $T+T$ coincides with the image of T under the central similarity of center o and ratio 2 . In other words, $T+T=2 T$.

b) By the definition of Minkowski sum,

$$
2 T=\{x+x: x \in T\} \subseteq\{x+y: x, y \in T\}=T+T
$$

for any nonempty set, from which $T \subseteq T_{2}$ follows. One can see similarly that $T \subseteq T_{k}$ for any nonempty set T and integer $k \in \mathbb{Z}^{+}$. On the other hand, since the elements of T_{k} are convex
combinations of points of T, we also have $T_{k} \subseteq \operatorname{conv}(T)$. If T is convex, then $T=\operatorname{conv}(T)$, implying that then $T_{k}=T$ for any positive integer k.

One can ask whether the relation $T_{k} \subseteq T_{m}$ also holds for any positive integers $k \leq m$, even if T is not necessarily convex. This is not true in general, as shown by the set $T=\left[o, e_{1}\right] \cup\left[o, e_{2}\right] \subset \mathbb{R}^{2}$, where e_{1}, e_{2} is the usual basis of the plane. Then, e.g. $T_{2} \nsubseteq T_{3}$, as shown in the figure.

c) One can present the above example in a more general way. Let K_{1} and K_{2} be n-dimensional unit cubes in two orthogonal n-dimensional linear subspaces of $\mathbb{R}^{2 n}$, and let $S=K_{1} \cup K_{2}$. Let $S[k]=\overbrace{S+\ldots+S}^{k}$. Then

$$
S[2]=S+S=\left(K_{1}+K_{1}\right) \cup\left(K_{1}+K_{2}\right) \cup\left(K_{2}+K_{1}\right) \cup\left(K_{2}+K_{2}\right)=\left(2 K_{1}\right) \cup\left(K_{1}+K_{2}\right) \cup\left(2 K_{2}\right),
$$

implying $\operatorname{vol}(S[2])=1$. Similarly, $S[3]=\bigcup_{i=0}^{3}\left(i K_{1}+(k-i) K_{2}\right)$. Since $\left(2 K_{1}+K_{2}\right) \cap\left(K_{1}+2 K_{2}\right)=$ $K_{1}+K_{2}$, we have $\operatorname{vol}(S[3])=2 \cdot 2^{n}-1$. But this implies $\operatorname{vol}(S[3] / 3)=\frac{2^{n+1}-1}{3^{2 n}}<\operatorname{vol}(S[2])=\frac{1}{2^{2 n}}$, if n is sufficiently large.

Exercise 4. Let the sum of the planar vectors $a_{1}, a_{2}, \ldots, a_{k}$ be o. Assume that among these vectors there are no two with the same direction. Prove that up to translation there is a unique convex polygon whose sides, oriented according to a fixed orientation of the plane, are exactly these vectors.

Solution

Draw these vectors in such a way that their starting points are o, and label them such that $a_{1}, a_{2}, \ldots, a_{k}$ are exactly in this order around o in counterclockwise order. Let P be an arbitrary convex polygon whose side vectors (oriented in counterclockwise order) are $a_{1}, a_{2}, \ldots, a_{k}$ in counterclockwise order. Let us walk around on the boundary of P in counterclockwise order. Then at every vertex we turn to the left with an angle between 0 and π (this angle is called turning angle). In case of a convex polygon, the sum of these turning angles is 2π, and thus, the side vectors of P are $a_{1}, a_{2}, \ldots, a_{k}$ if and only if they appear in this order in the boundary of P, that is, up to translation, P is unique.

Now, let Q be the polygonal curve obtained by connecting the points $o, a_{1}, a_{1}+a_{2}, \ldots, a_{1}+$ $\ldots+a_{k}$ in this order. Since $\sum_{i=1}^{k} a_{i}=o, Q$ is a closed polygonal curve. Let L_{i} be the line through the points $a_{1}+\ldots+a_{i-1}$ and $a_{1}+\ldots+a_{i}$.

We show that L_{i} is a sideline of Q, that is, one of the two closed half planes bounded by L_{i} contains Q. Since the labelling of the points is cyclic, it is sufficient to show it for the line L_{1} containing the segment $\left[0, a_{1}\right]$. Using a suitable coordinate system we may assume that $a_{1}=\left(0, x_{1}\right)$ for some suitable $x_{1}>0$. Let $a_{i}=\left(x_{i}, y_{i}\right), x_{i}, y_{i} \in \mathbb{R}$ for all values of i. By the choice of the indices, there is some index $1<m<k$ such that $y_{1}, \ldots y_{m} \geq 0$, and $y_{m+1}, \ldots, y_{k}<0$. But the y-coordinates of the vertices of Q are $0, y_{1}=0, y_{1}+y_{2}, y_{1}+y_{2}+y_{3}, \ldots, y_{1}+\ldots+y_{k}=0$ in this order, and thus, this sequence is increasing up to $y_{1}+\ldots+y_{m}$, and decreasing after that, which implies that all vertices of Q, and also Q, are contained in the closed half space $\left\{(x, y) \in \mathbb{R}^{2}: y \geq 0\right\}$.

Exercise 5. Let K and L be convex polygons, whose edge vectors, according to a fixed orientation of the plane, are a_{1}, \ldots, a_{k} and b_{1}, \ldots, b_{m}, respectively. Prove that if, among the vectors, there are no two in the same direction, then $K+L$ is a convex polygon whose edge vectors are exactly $a_{1}, \ldots, a_{k}, b_{1}, \ldots, b_{m}$. How can we modify the statement if there are vectors with the same direction?

Solution

We use the notation of the previous exercise, and assume that the vectors a_{i} and b_{j} are labelled in such a way that starting with the direction of the positive half of the x-axis, their order according to positive (counterclockwise) orientation is $a_{1}, a_{2}, \ldots, a_{k}$, and $b_{1}, b_{2}, \ldots, b_{m}$, respectively. In addition, let $c_{1}, c_{2}, \ldots, c_{k+m}$ be the vector system, ordered according to positive orientation starting with the positive half of the x-axis, satisfying $\left\{c_{1}, \ldots, c_{k+m}\right\}=\left\{a_{1}, \ldots a_{k}\right\} \cup\left\{b_{1}, \ldots, b_{m}\right\}$. Let M be the convex polygon whose vertices are $o, c_{1}, c_{1}+c_{2}, \ldots, c_{1}+\ldots+c_{k+m}=o$ in this order. We show that $M=K+L$.

Observe that every vertex of M can be written in the form $\left(a_{1}+\ldots+a_{i}\right)+\left(b_{1}+\ldots+b_{j}\right)$ for some suitable indices i and j, and hence, every vertex of M is the sum of a vertex of K and a vertex of L, which implies $M \subseteq K+L$. We show that the line E through $\left[o, c_{1}\right]$ is a supporting line of $K+L$. To do this, we may assume that $c_{1}=a_{1}$, and E coincides with the x-axis. Then, by the consideration in the previous problem, it follows that the y-coordinates of every vertex of K and L is nonnegative. We can say the same for all the convex combinations of these vertices, which implies that E is a supporting line of $K+L$. Similarly, one can see that every sideline (and similarly every supporting line) of M is a supporting line of $K+L$. Since a compact, convex set can be written as the intersection of its supporting half planes, from this $M=K+L$ follows.

If among the vectors there are some in the same direction, then the statement also holds, which can be shown, e.g. by a limit argument.

Definition. If $K \subset \mathbb{R}^{n}$ is compact, convex, and $\operatorname{int} K \neq \emptyset$, then we say that K is a convex body. The perimeter of a plane convex body K is the supremum of the perimeters of the convex polygons contained in K, if it exists. Its notation: perim (K).

Remark. It can be shown that every plane convex body has a perimeter, and if $K \subseteq L$ are plane convex bodies, then $\operatorname{perim}(K) \leq \operatorname{perim}(L)$.

Exercise 6. Let K and L be plane convex bodies. Prove that then perim $(K+L)=\operatorname{perim}(K)+$ perim (L).

Solution. Let $\varepsilon>0$ be arbitrary. By the definition of perimeter, there are convex polygons $P \subseteq K, Q \subseteq L$ satisfying $0 \leq \operatorname{perim}(K)-\operatorname{perim}(P)<\frac{\varepsilon}{2}$ and $0 \leq \operatorname{perim}(L)-\operatorname{perim}(Q)<\frac{\varepsilon}{2}$. Then,
by the properties of vector sum, we have $P+Q \subseteq K+L$, implying perim $(P+Q) \subseteq \operatorname{perim}(K+L)$. But, by the previous exercise, $\operatorname{perim}(P+Q)=\operatorname{perim}(P)+\operatorname{perim}(Q)$, and thus, $\operatorname{perim}(K+L)>$ $\operatorname{perim}(K)+\operatorname{perim}(L)-\varepsilon$ for any $\varepsilon>0$, which implies perim $(K+L) \geq \operatorname{perim}(K)+\operatorname{perim}(L)$.

On the other hand, let $X \subset K+L$ be a convex polygon satisfying perim $(X)>\operatorname{perim}(K+L)-\varepsilon$. Let $X=\operatorname{conv}\left\{x_{i}+y_{i}: x_{i} \in K, y_{i} \in L, i=1,2, \ldots, m\right\}$. Let $P=\operatorname{conv}\left\{x_{i}: i=1, \ldots, m\right\} \subseteq K$ and $Q=\operatorname{conv}\left\{y_{i}: i=1,2, \ldots, m\right\} \subseteq L$. Then $X \subseteq P+Q \subseteq K+L$. By the definition of perimeter, $X \subseteq P+Q$ implies perim $(X) \leq \operatorname{perim}(P+Q)=\operatorname{perim}(P)+\operatorname{perim}(Q) \leq \operatorname{perim}(K)+\operatorname{perim}(L)$, which yields perim $(K)+\operatorname{perim}(L) \geq \operatorname{perim}(K+L)-\varepsilon$ for any $\varepsilon>0$. Hence, perim $(K)+\operatorname{perim}(L) \geq$ perim $(K+L)$. Comparing it to the inequality at the end of the previous paragraph, we obtain the desired equality.

