
Convex Geometry tutorial

for students with mathematics major

Problem sheet 4 - Hyperplanes, Minkowski sum, separation -

Solutions

Exercise 1. Prove that if A and B are two disjoint, convex sets in Rn, then there are disjoint

convex sets A′, B′ in Rn satisfying A ⊂ A′, B ⊂ B′, and A′ ∪B′ = Rn.

Solution

We prove the statement by induction on n. Let n = 1. If, e.g. L = ∅, then K∗ = R1 and L∗ = ∅
satisfy the required conditions. If K and L are not empty, then by the Separation Theorem there

is a point p such that hogy one of the two closed half lines starting at p contains K, and the other

one contains L. Let these two half lines be E1 and E2 such that K ⊆ E1 and L ⊆ E2. Since K
and L are disjoint, we can assume that e.g. p /∈ L. Then K∗ = E1 and L∗ = E2 \ {p} satisfy the

required conditions.

Now, assume that the statement holds in Rk for any k < n. If e.g. L = ∅, then K∗ = Rn és

L∗ = ∅ satisfy the conditions. In the opposite case, as K and L are disjoint, convex sets, there is

a hyperplane H that (not necessarily strictly) separates K and L. Let the two open half spaces

bounded by H be denoted by H+ and H−, where K ⊆ H ∪H+ and L ⊆ H ∪H−. The sets H ∩K
and H ∩ L are convex, being the intersections of convex sets, and they are disjoint. Since H is an

(n−1)-dimensional Euclidean space, we may apply the induction hypothesis, and obtain that there

are disjoint, convex sets K∗H and L∗H , for which H ∩K ⊆ K∗H , H ∩ L ⊆ L∗H , and H = K∗H ∪ L∗H .
Let K∗ = H+ ∪K∗H and L∗ = H− ∪ L∗H . These sets are disjoint, and their union is Rn. We show

that they are convex.

CLearly, it is su�cient to show that K∗ is convex. Let p, q ∈ K∗. If p, q ∈ K∗H , then by the

convexity of K∗H we have [p, q] ⊆ K∗H ⊂ K∗. Let, e.g. p ∈ H+. Then for any point r ∈ [p, q], r 6= q
we have r ∈ H1 ⊂ K∗, therefore [p, q] ⊆ K∗, implying that K∗ is convex. Thus, K∗ and L∗ satisfy
the conditions of the exercise.

Exercise 2. Describe all decompositions of the 3-dimensional Euclidean space into the union of

two disjoint, convex sets. What is the situation in Rn?

Solution

Let us call a set X in Rn a suitable set, if X = ∅, X = Rn, or for some 1 ≤ k ≤ n there are sets

H1
+, H

2
+, . . . ,H

k
+, H

k such that

(i) H1
+ is an open half space in Rn, H2

+ is an open half space in the boundary of H1
+, and in

general, for every 2 ≤ m ≤ k, Hm
+ is an open half space in the relative boundary of Hm−1

+ ,

(ii) Hk is the relative boundary of Hk
+,

(iii) X =
⋃k

i=1H
i
+ (�rst type suitable set), or X = Hk ∪

⋃k
i=1H

i
+ (second type suitable set).

by the argument used in the previous exercise, every suitable set is convex, and the complement of

a �rst type suitable set is a second type suitable set, and vice versa. Therefore any decomposition

of Rn into the union of two suitable sets satis�es the conditions. We show that if K and L are

convex sets whose disjoint union is Rn, then K and L are suitable sets.

We prove the statement by induction on n. We may assume that K and L are not empty.

Applying the idea of the solution of Exercise 1, we have that in this case one of K and L is a closed

half line and the other one is an open half line, which are suitable sets. Assume that the statement

is true for the decompositions of Rn−1, and let K,L be disjoint, convex sets satisfying K ∪L = Rn.
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The sets ∅, Rn satisfy the conditions. If K and L are not this pair, then by the Separation Theorem

there is a hyperplane H1 separating K and L, and thus, suitably labelling the open half planes

H1
+, H

1
− bounded by H1, we have K ⊆ H1 ∪ H1

+ and L ⊆ H1 ∪ H1
−, from which H1

+ ⊆ K and

H1
− ⊆ L. Let K1 = K ∩H1 and L1 = L∩H1. Then K = K1∪H1

+ and L = L1∪H1
−. On the other

hand, K1 and L1 are disjoint, convex sets, and K1 ∪L1 = H1, which, by the induction hypothesis,

implies that K1 and L1 are suitable sets in H1. But then K and L are suitable sets in Rn.

Exercise 3. (a) Let T be a regular triangle. What is T − T? What is T + T?

(b) For any compact set T ⊂ Rn and positive integer k let Tk =

k︷ ︸︸ ︷
T + T + . . .+ T

k . Prove that if T
is convex and k ∈ Z+, then

Tk = T.

If T is not necessarily convex, what is the relationship between T , Tk and conv(T )?
(c)∗ Prove that if T ⊂ Rn is compact and convex andk ∈ Z+, then

V (Tk) ≤ V (Tk+1),

where V (·) denotes n-dimensional volume (Lebesgue measure). What happens if T is not necessarily

convex?

Solution

a) Observe that for any A,B ⊂ Rn and x, y ∈ Rn we have (x+A) + (y +B) = (x+ y) + (A+B),
that is, the vector sum of translates of two given sets is a translate of the vector sum of the sets.

Thus, up to translation, T − T is independent of the choice of the origin, and we may assume that

one vertex of T is o, implying that −T is the re�ection of T about that vertex. On the other hand,

for any sets A,B ⊂ Rn, A+B =
⋃

a∈A({a}+B), that is, T−T can be obtained by sliding −T along

all points of T , and taking the union of all these translates of −T . In this waay one can see that

T − T is a regular hexagon centered at o, with edge length equal to the edge length of T and −T ,
and containing one of the edges of both these triangles in its boundary. We obtain similarly that if

o is a vertex of T , then T +T = 2T , that is, T +T coincides with the image of T under the central

similarity of center o and ratio 2. If it is not true, then T can be written in the form T = x+ T0,
where a vertex of T0 is o. But then T +T = (x+T0)+ (x+T0) = 2x+(T0+T0) = 2x+2T0 = 2T ,
and the previous statement holds also in the general case, that is, T + T coincides with the image

of T under the central similarity of center o and ratio 2. In other words, T + T = 2T .

T

-T

T-T

o

o
2x

T+T

T
x

b) By the de�nition of Minkowski sum,

2T = {x+ x : x ∈ T} ⊆ {x+ y : x, y ∈ T} = T + T

for any nonempty set, from which T ⊆ T2 follows. One can see similarly that T ⊆ Tk for any

nonempty set T and integer k ∈ Z+. On the other hand, since the elements of Tk are convex
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combinations of points of T , we also have Tk ⊆ conv(T ). If T is convex, then T = conv(T ),
implying that then Tk = T for any positive integer k.

One can ask whether the relation Tk ⊆ Tm also holds for any positive integers k ≤ m, even if T
is not necessarily convex. This is not true in general, as shown by the set T = [o, e1]∪ [o, e2] ⊂ R2,

where e1, e2 is the usual basis of the plane. Then, e.g. T2 6⊆ T3, as shown in the �gure.

TT T2 3

c) One can present the above example in a more general way. Let K1 and K2 be n-dimensional

unit cubes in two orthogonal n-dimensional linear subspaces of R2n, and let S = K1 ∪ K2. Let

S[k] =

k︷ ︸︸ ︷
S + . . .+ S. Then

S[2] = S + S = (K1 +K1) ∪ (K1 +K2) ∪ (K2 +K1) ∪ (K2 +K2) = (2K1) ∪ (K1 +K2) ∪ (2K2),

implying vol(S[2]) = 1. Similarly, S[3] =
⋃3

i=0(iK1+(k− i)K2). Since (2K1+K2)∩ (K1+2K2) =

K1 +K2, we have vol(S[3]) = 2 · 2n − 1. But this implies vol(S[3]/3) = 2n+1−1
32n

< vol(S[2]) = 1
22n

,

if n is su�ciently large.

Exercise 4. Let the sum of the planar vectors a1, a2, . . . , ak be o. Assume that among these

vectors there are no two with the same direction. Prove that up to translation there is a unique

convex polygon whose sides, oriented according to a �xed orientation of the plane, are exactly these

vectors.

Solution

Draw these vectors in such a way that their starting points are o, and label them such that

a1, a2, . . . , ak are exactly in this order around o in counterclockwise order. Let P be an arbit-

rary convex polygon whose side vectors (oriented in counterclockwise order) are a1, a2, . . . , ak in

counterclockwise order. Let us walk around on the boundary of P in counterclockwise order. Then

at every vertex we turn to the left with an angle between 0 and π (this angle is called turning

angle). In case of a convex polygon, the sum of these turning angles is 2π, and thus, the side

vectors of P are a1, a2, . . . , ak if and only if they appear in this order in the boundary of P , that
is, up to translation, P is unique.

Now, let Q be the polygonal curve obtained by connecting the points o, a1, a1 + a2, . . . , a1 +
. . .+ ak in this order.Since

∑k
i=1 ai = o, Q is a closed polygonal curve. Let Li be the line through

the points a1 + . . .+ ai−1 and a1 + . . .+ ai.
We show that Li is a sideline of Q, that is, one of the two closed half planes bounded by

Li contains Q. Since the labelling of the points is cyclic, it is su�cient to show it for the line L1

containing the segment [0, a1]. Using a suitable coordinate system we may assume that a1 = (0, x1)
for some suitable x1 > 0. Let ai = (xi, yi), xi, yi ∈ R for all values of i. By the choice of the indices,
there is some index 1 < m < k such that y1, . . . ym ≥ 0, and ym+1, . . . , yk < 0. But the y-coordinates
of the vertices of Q are 0, y1 = 0, y1 + y2, y1 + y2 + y3, . . . , y1 + . . .+ yk = 0 in this order, and thus,

this sequence is increasing up to y1 + . . . + ym, and decreasing after that, which implies that all

vertices of Q, and also Q, are contained in the closed half space {(x, y) ∈ R2 : y ≥ 0}.
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Exercise 5. Let K and L be convex polygons, whose edge vectors, according to a �xed orien-

tation of the plane, are a1, . . . , ak and b1, . . . , bm, respectively. Prove that if, among the vectors,

there are no two in the same direction, then K + L is a convex polygon whose edge vectors are

exactly a1, . . . , ak, b1, . . . , bm. How can we modify the statement if there are vectors with the same

direction?

Solution

We use the notation of the previous exercise, and assume that the vectors ai and bj are labelled in

such a way that starting with the direction of the positive half of the x-axis, their order according to
positive (counterclockwise) orientation is a1, a2, . . . , ak, and b1, b2, . . . , bm, respectively. In addition,
let c1, c2, . . . , ck+m be the vector system, ordered according to positive orientation starting with

the positive half of the x-axis, satisfying {c1, . . . , ck+m} = {a1, . . . ak} ∪ {b1, . . . , bm}. Let M be

the convex polygon whose vertices are o, c1, c1 + c2, . . . , c1 + . . .+ ck+m = o in this order. We show

that M = K + L.
Observe that every vertex of M can be written in the form (a1 + . . .+ ai) + (b1 + . . .+ bj) for

some suitable indices i and j, and hence, every vertex of M is the sum of a vertex of K and a

vertex of L, which implies M ⊆ K + L. We show that the line E through [o, c1] is a supporting

line of K + L. To do this, we may assume that c1 = a1, and E coincides with the x-axis. Then,

by the consideration in the previous problem, it follows that the y-coordinates of every vertex of

K and L is nonnegative. We can say the same for all the convex combinations of these vertices,

which implies that E is a supporting line of K +L. Similarly, one can see that every sideline (and

similarly every supporting line) of M is a supporting line of K + L. Since a compact, convex set

can be written as the intersection of its supporting half planes, from this M = K + L follows.

If among the vectors there are some in the same direction, then the statement also holds, which

can be shown, e.g. by a limit argument.

De�nition. If K ⊂ Rn is compact, convex, and intK 6= ∅, then we say that K is a convex body.

The perimeter of a plane convex body K is the supremum of the perimeters of the convex polygons

contained in K, if it exists. Its notation: perim(K).

Remark. It can be shown that every plane convex body has a perimeter, and if K ⊆ L are plane

convex bodies, then perim(K) ≤ perim(L).

Exercise 6. Let K and L be plane convex bodies. Prove that then perim(K + L) = perim(K) +
perim(L).

Solution. Let ε > 0 be arbitrary. By the de�nition of perimeter, there are convex polygons

P ⊆ K, Q ⊆ L satisfying 0 ≤ perim(K)−perim(P ) < ε
2 and 0 ≤ perim(L)−perim(Q) < ε

2 . Then,
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by the properties of vector sum, we have P +Q ⊆ K+L, implying perim(P +Q) ⊆ perim(K+L).
But, by the previous exercise, perim(P +Q) = perim(P ) + perim(Q), and thus, perim(K + L) >
perim(K) + perim(L)− ε for any ε > 0, which implies perim(K + L) ≥ perim(K) + perim(L).

On the other hand, let X ⊂ K+L be a convex polygon satisfying perim(X) > perim(K+L)−ε.
Let X = conv{xi + yi : xi ∈ K, yi ∈ L, i = 1, 2, . . . ,m}. Let P = conv{xi : i = 1, . . . ,m} ⊆ K and

Q = conv{yi : i = 1, 2, . . . ,m} ⊆ L. Then X ⊆ P + Q ⊆ K + L. By the de�nition of perimeter,

X ⊆ P +Q implies perim(X) ≤ perim(P +Q) = perim(P ) + perim(Q) ≤ perim(K) + perim(L),
which yields perim(K)+perim(L) ≥ perim(K+L)−ε for any ε > 0. Hence, perim(K)+perim(L) ≥
perim(K +L). Comparing it to the inequality at the end of the previous paragraph, we obtain the

desired equality.

5


