
Convex Geometry tutorial

for students with mathematics major

Problem sheet 5 - Supporting hyperplanes, faces of convex sets,

extremal and exposed points, the Krein-Milman Theorem

Exercise 1. Prove that any compact, convex set in Rn can be written as the intersection of

closed balls.

Solution

Let K ⊂ Rn be an arbitrary compact, convex set. We need to show that if p /∈ K, then there is

some closed ball Br(x) centered at x and with radius r such that K ⊆ Br(x) and p /∈ Br(x), as
this yields that the intersection of the closed balls containing K do not contain additional points.

Let p /∈ K be arbitrary. Since K is compact, for a suitable R > 0 we have K ⊂ BR(p). On the

other hand, as K is compact and convex, p can be strictly separated from K by a hyperplane. Let

M denote the intersection of BR(p) and the closed half space, bounded by H and containing K.

Clearly, K ⊆M , implying that if we �nd a closed ball containing M and not containing p, we have
shown the statement. Let L denote the half line starting at p, perpendicular to H and intersecting

H. Let h denote the distance of p and H. ThenM is a section of a ball smaller than a half ball, and

the radius of the base ofM is
√
R2 − h2 by the Pythagorean Theorem. Let x denote the point in L

at the distance from H equal to hx which is separated from p by H. Observe that by our previous

consideration M ⊆ Br(x) if and only if M ∩ H ⊆ Br(x), that is, if r ≥
√
R2 − h2 + h2x. On the

other hand, p /∈ Br(x) if and only if r < hx+h. But (hx+h)2−(R2−h2+h2x) = 2hhx+2h2−R2 > 0
if hx is su�ciently small, and thus, there is some value of r satisfying both inequalities. This implies

the statement.

Exercise 2. Let K ⊂ Rn be a compact set. We have shown that if K is convex, then it is

supported at every boundary point by a hyperplane. Can this statement be reversed; e.g. if K is

supported at every boundary point by a hyperplane, then K is convex?

Solution

If dim(K) = dim aff(K) < n, then there is a hyperplane H with K ⊂ H. But then H supports K
at every boundary point, and thus, the condition is satis�ed, even if K is not convex. Thus, the

answer is negative. There are other examples as well, e.g. taking the boundary of an arbitrary,

compact, convex set with nonempty interior (e.g. a closed ball), or the set of vertices of a polytope

(e.g. a cube).

Exercise 3. Let K ⊂ Rn be a compact, convex set, and let F be a face of K. Prove that if p is

an extremal point of F , then p is an extremal point of K.

Solution

If p ∈ F , then F 6= ∅ K is a proper face. But then by the de�nition of face, there is a linear

functional f : Rn → R that attains its minimum on K exactly at F . But then the statement is the

consequence of Theorem 1 of �fth lecture.

Exercise 4. Let K be a compact, convex set, and let p ∈ K be a point for which ||p|| ≥ ||q|| for
any q ∈ K. Prove that then p ∈ exK.

Solution

Let r = ||p||. By the conditions, K ⊆ Br(o), where Br(o) denotes the closed ball of radius

r and center o, and p ∈ bdBr(o), and thus, Br(o) has a supporting (tangent) hyperplane H
which intersects the ball at the point p. The only common point of Br(o) and H is p, but then
p ∈ K ⊆ Br(o) yields K ∩H = {p}, and thus, p ∈ ex(K).
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Exercise 5. Let A ⊂ Rn be compact. Verify that p ∈ A is an extremal point of conv(A) if and
only if p /∈ conv(A \ {p}).

Solution

Assume that p ∈ ext conv(A \ {p}). Then p can be written as a convex combination of points

from A \ {p}; that is, there are points p1, p2, . . . , pk ∈ A \ {p} and coe�cients 0 ≤ λ1, . . . , λk,∑k
i=1 λi = 1 such that p =

∑k
i=1 λipi. We can assume that we choose a combination in which k is

minimal. In this case every coe�cient is from (0, 1), and since p /∈ A \ {p}, we have k ≥ 2 . Let

q = 1
1−λ1

∑k
i=2 λipi. According to our assumption for k, q 6= p, but

p =
k∑
i=1

λipi = λ1p1 + (1− λ1)q.

Since q ∈ conv(A\{p}) ⊆ convA, we managed to express p as a relative interior point of a segment

in conv(A), yielding that p /∈ ext(conv(A)).
Now we will show that if p /∈ ext(conv(A)), then p ∈ conv(A \ {p}). We do it by induction

on n. If n = 1, then conv(A) is a closed segment, whose extremal points are its endpoints,

which readily implies the statement.Assume that the statement holds for any compact set in an

(n − 1)-dimensional Euclidean space. Let A ⊂ Rn, and assume that p /∈ ext(conv(A)). If p ∈
bd conv(A), then conv(A) has a supporting hyperplane H containing p. But, by Proposition 1

of the second lecture, conv(A \ {p}) ∩ H = conv(H ∩ (A \ {p})), and by Theorem 1 of the �fth

lecture, H∩ext(conv(A)) = ext(H∩conv(A)). Thus p /∈ ext(conv(H∩A)), which, by the induction
hypothesis, implies that p ∈ conv((A∩H)\{p}) ⊆ conv(A\{p}). From this the statement follows.

Assume now that p ∈ int conv(A). Then there are q, r ∈ conv(A) p 6= q, r such that p ∈ [q, r],
where, withput loss of generality, we may assume that q, r ∈ bd conv(A). Let Hq and Hr be

supporting hyperplanes of conv(A) satisfying q ∈ Hq and r ∈ Hr. But p ∈ int conv(A) implies

p /∈ Hq and p /∈ Hr. Hence, q ∈ Hq ∩ conv(A) = conv(Hq ∩ A) ⊆ conv(A \ {p}), and it follows

similarly that r ∈ conv(A \ {p}), which implies the statement.

Exercise 6. Prove that every exposed point is also an extremal point.

Solution

This is exactly Proposition 2 of the �fth lecture.
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