Convex Geometry tutorial
for students with mathematics major

Problem sheet 5 - Supporting hyperplanes, faces of convex sets,
extremal and exposed points, the Krein-Milman Theorem

Exercise 1. Prove that any compact, convex set in R™ can be written as the intersection of
closed balls.

Solution
Let K C R™ be an arbitrary compact, convex set. We need to show that if p ¢ K, then there is
some closed ball B,(z) centered at z and with radius r such that K C B,(x) and p ¢ B,.(z), as
this yields that the intersection of the closed balls containing K do not contain additional points.

Let p ¢ K be arbitrary. Since K is compact, for a suitable R > 0 we have K C Bg(p). On the
other hand, as K is compact and convex, p can be strictly separated from K by a hyperplane. Let
M denote the intersection of Br(p) and the closed half space, bounded by H and containing K.
Clearly, K C M, implying that if we find a closed ball containing M and not containing p, we have
shown the statement. Let L denote the half line starting at p, perpendicular to H and intersecting
H. Let h denote the distance of p and H. Then M is a section of a ball smaller than a half ball, and
the radius of the base of M is v R? — h2 by the Pythagorean Theorem. Let z denote the point in L
at the distance from H equal to h, which is separated from p by H. Observe that by our previous
consideration M C B, (z) if and only if M N H C B,(x), that is, if » > \/R2 — h? 4+ h2. On the
other hand, p ¢ B,.(z) if and only if 7 < hy+h. But (hy+h)?— (R?>—h2+h2) = 2hh,+2h>—R? > 0
if h,, is sufficiently small, and thus, there is some value of r satisfying both inequalities. This implies
the statement.

Exercise 2. Let K C R" be a compact set. We have shown that if K is convex, then it is
supported at every boundary point by a hyperplane. Can this statement be reversed; e.g. if K is
supported at every boundary point by a hyperplane, then K is convex?

Solution
If dim(K) = dimaff(K) < n, then there is a hyperplane H with K C H. But then H supports K
at every boundary point, and thus, the condition is satisfied, even if K is not convex. Thus, the
answer is negative. There are other examples as well, e.g. taking the boundary of an arbitrary,
compact, convex set with nonempty interior (e.g. a closed ball), or the set of vertices of a polytope
(e.g. a cube).

Exercise 3. Let K C R™ be a compact, convex set, and let F' be a face of K. Prove that if p is
an extremal point of F, then p is an extremal point of K.

Solution
If pe F, then F # () K is a proper face. But then by the definition of face, there is a linear
functional f : R™ — R that attains its minimum on K exactly at F'. But then the statement is the
consequence of Theorem 1 of fifth lecture.

Exercise 4. Let K be a compact, convex set, and let p € K be a point for which |[p|| > ||¢|| for
any q € K. Prove that then p € ex K.

Solution
Let » = ||p||. By the conditions, K C B,(0), where B,(0) denotes the closed ball of radius
r and center o, and p € bdB,(0), and thus, B,(0o) has a supporting (tangent) hyperplane H
which intersects the ball at the point p. The only common point of B,(0) and H is p, but then
p € K C B,(0) yields K N H = {p}, and thus, p € ex(K).



Exercise 5. Let A C R" be compact. Verify that p € A is an extremal point of conv(A) if and
only if p ¢ conv(A \ {p}).
Solution

Assume that p € extconv(A \ {p}). Then p can be written as a convex combination of points
from A\ {p}; that is, there are points p1,pa,...,px € A\ {p} and coefficients 0 < Ay,..., A,
Zle A; = 1 such that p = Zle Aip;. We can assume that we choose a combination in which k is
minimal. In this case every coefficient is from (0,1), and since p ¢ A\ {p}, we have &k > 2 . Let
q= 1JA Zf:Z Aipi- According to our assumption for k, g # p, but

1

k
p=>_ Aipi = p1+ (1= X\)g.
i=1

Since g € conv(A\ {p}) C conv A, we managed to express p as a relative interior point of a segment
in conv(A), yielding that p ¢ ext(conv(A)).

Now we will show that if p ¢ ext(conv(A)), then p € conv(A \ {p}). We do it by induction
on n. If n = 1, then conv(A) is a closed segment, whose extremal points are its endpoints,
which readily implies the statement.Assume that the statement holds for any compact set in an
(n — 1)-dimensional Euclidean space. Let A C R", and assume that p ¢ ext(conv(A)). If p €
bd conv(A), then conv(A) has a supporting hyperplane H containing p. But, by Proposition 1
of the second lecture, conv(A \ {p}) N H = conv(H N (A \ {p})), and by Theorem 1 of the fifth
lecture, HNext(conv(A)) = ext(H Nconv(A)). Thus p ¢ ext(conv(HNA)), which, by the induction
hypothesis, implies that p € conv((ANH)\ {p}) C conv(A\ {p}). From this the statement follows.
Assume now that p € intconv(A). Then there are ¢,r € conv(A) p # ¢,r such that p € [¢,7],
where, withput loss of generality, we may assume that ¢, € bdconv(A). Let H, and H, be
supporting hyperplanes of conv(A) satisfying ¢ € H, and r € H,. But p € intconv(A) implies
p ¢ Hyand p ¢ H,. Hence, ¢ € H; N conv(A) = conv(H; N A) C conv(A\ {p}), and it follows
similarly that r € conv(A \ {p}), which implies the statement.

Exercise 6. Prove that every exposed point is also an extremal point.
Solution
This is exactly Proposition 2 of the fifth lecture.



