Convex Geometry tutorial for students with mathematics major

Problem sheet 7 - Polytopes, polyhedral sets, their face structures - Solutions

Exercise 1. Prove that the extremal points of a polytope are also its exposed points.

Solution.

In Theorem 1 of the 8th lecture we have proved exactly this.

Exercise 2. A proper face of a closed, convex set is its intersection with one of its supporting hyperplanes. Prove that a proper face of a polyhedral set is also a polyhedral set.

Solution.

Let $P=\bigcap_{i=1}^{m} H_{i}$ be a polyhedral set, where the sets H_{i} are closed half spaces, and let F be a proper face of P. Then there is a supporting hyperplane H of P such that $H \cap P=F$. But if the two closed half spaces bounded by H are denoted by H^{+}and H^{-}, then $F=P \cap H\left(\bigcap_{i=1}^{m} H_{i}\right) \cap H^{+} \cap H^{-}$, therefore F is the intersection of finitely many closed half spaces.

Exercise 3. Let $K=\left\{p:\left\langle p, u_{i}\right\rangle \geq \alpha_{i}, i \in I\right\}$, with $|I|<\infty$, be a bounded polyhedral set. For any point $p \in K$ let $I(p)=\left\{i:\left\langle p, u_{i}\right\rangle=\alpha_{i}\right\}$. Let $F=\left\{q \in K:\left\langle q, u_{i}\right\rangle=\alpha_{i}: i \in I(p)\right\}$. Prove that if we regard K as a face of itself, then F is the smallest face, with respect to inclusion, such that $p \in F$.

Solution.

By the continuity of linear functionals and the finiteness of I, if $p \in \operatorname{int}(K)$, then $I(p)=\emptyset$ and $F=K$, implying the statement. Assume that $p \in \operatorname{bd}(K)$. Since every bounded polyhedral set is a convex polytope, (cf. Theorem 3 in the 8 th lecture), by Lemma 2 of the 9 th lecture (and its proof) there is a unique face of K whose relative interior contains p, and this face is the intersection of all the faces containing p. Thus, to prove the statement it is sufficient to prove that $p \in \operatorname{relint}(F)$.

Let $X=\operatorname{aff}(F)=\left\{q \in \mathbb{R}^{n}:\left\langle q, u_{i}\right\rangle=\alpha_{i}: i \in I(p)\right\}$. Then the restrictions of the linear functionals, defining K, to X are either linear functionals or constants. More specifically, if $i \in I(p)$, then the restriction of the i th linear functional is constant, and otherwise it is a linear functional. Thus, F is the set $F=\left\{q \in X:\left\langle q, u_{i}\right\rangle \geq \alpha_{i}: i \in I \backslash I(p)\right\}$. But by the definition of $I(p)$, $\left\langle q, u_{i}\right\rangle>\alpha_{i}$ for every $i \in I \backslash I(p)$, and hence, $q \in \operatorname{relint}(F)$.

Exercise 4. Prove that every n-dimensional polytope has a facet. Prove that for every $k=$ $0,1, \ldots, n-1$, every n-dimensional polytope has a k-dimensional face.

Solution.

By Corollary 2 of the 8 th lecture, the boundary of an n-dimensional polytope is the union of its facets. Thus, P has a facet. Since the faces of a convex polytope are convex polytopes, and faces of a face of P are faces of P (Proposition 3 in the 8 th lecture), the second statement can be proved by induction on the dimension.

Exercise 5. Prove that an $(n-2)$-dimensional face of an n-dimensional polytope belongs to exactly two facets.

Solution.

Let G be an $(n-2)$-dimensional face of the n-dimensional polytope $P \subset \mathbb{R}^{n}$, where, for simplicity, we assume that $o \in G$. Let N be the set of the outer normal vectors of the supporting hyperplanes containing G. Then N is a subset of the orthogonal complement $(\operatorname{aff}(G))^{\perp} \operatorname{of} \operatorname{aff}(G)$, which is a 2-dimensional plane. Thus, the orthogonal projection of P onto (aff $(G))^{\perp}$ is a convex polygon, and
G is one of its vertices. Furthermore, by $N \subseteq(\text { aff }(G))^{\perp}$, the set of the outer normal vectors of the supporting lines of this convex polygon at this vertex is N. Thus, the supporting hyperplane perpendicular to a relative interior point of N intersects P in G, and the one perpendicular to a point in either of the two rays forming the relative boundary of N is a proper face of P, respectively, that strictly contains G. Thus, these two faces are facets containing G. On the other hand, the outer normal vectors of any facet containing G lie in N, which shows that there are no more facets of P containing G.

Exercise 6. (Diamond property) Let P be an arbitrary n-dimensional polytope, and $F \subset G$ are faces of P with $\operatorname{dim} F+2=\operatorname{dim} G$. Then P has exactly two faces F_{1}, F_{2}, different from F and G, that satisfy $F \subset F_{1}, F_{2} \subset G$.

Solution.

Observe that the dimension of the faces satisfying the conditions is $\operatorname{dim}(F)+1=\operatorname{dim}(G)-1$. Thus, the statement follows from applying the result of the previous exercise to the polytope G.

