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Problem sheet 7 - Polytopes, polyhedral sets, their face structures

- Solutions

Exercise 1. Prove that the extremal points of a polytope are also its exposed points.

Solution.

In Theorem 1 of the 8th lecture we have proved exactly this.

Exercise 2. A proper face of a closed, convex set is its intersection with one of its supporting

hyperplanes. Prove that a proper face of a polyhedral set is also a polyhedral set.

Solution.

Let P =
⋂m

i=1Hi be a polyhedral set, where the sets Hi are closed half spaces, and let F be a proper

face of P . Then there is a supporting hyperplane H of P such that H∩P = F . But if the two closed
half spaces bounded by H are denoted by H+ and H−, then F = P ∩ H (

⋂m
i=1Hi) ∩ H+ ∩ H−,

therefore F is the intersection of �nitely many closed half spaces.

Exercise 3. Let K = {p : ⟨p, ui⟩ ≥ αi, i ∈ I}, with |I| < ∞, be a bounded polyhedral set. For

any point p ∈ K let I(p) = {i : ⟨p, ui⟩ = αi}. Let F = {q ∈ K : ⟨q, ui⟩ = αi : i ∈ I(p)}. Prove that
if we regard K as a face of itself, then F is the smallest face, with respect to inclusion, such that

p ∈ F .
Solution.

By the continuity of linear functionals and the �niteness of I, if p ∈ int(K), then I(p) = ∅ and

F = K, implying the statement. Assume that p ∈ bd(K). Since every bounded polyhedral set is a

convex polytope, (cf. Theorem 3 in the 8th lecture), by Lemma 2 of the 9th lecture (and its proof)

there is a unique face of K whose relative interior contains p, and this face is the intersection of all

the faces containing p. Thus, to prove the statement it is su�cient to prove that p ∈ relint(F ).
Let X = aff(F ) = {q ∈ Rn : ⟨q, ui⟩ = αi : i ∈ I(p)}. Then the restrictions of the linear

functionals, de�ningK, toX are either linear functionals or constants. More speci�cally, if i ∈ I(p),
then the restriction of the ith linear functional is constant, and otherwise it is a linear functional.

Thus, F is the set F = {q ∈ X : ⟨q, ui⟩ ≥ αi : i ∈ I \ I(p)}. But by the de�nition of I(p),
⟨q, ui⟩ > αi for every i ∈ I \ I(p), and hence, q ∈ relint(F ).

Exercise 4. Prove that every n-dimensional polytope has a facet. Prove that for every k =
0, 1, . . . , n− 1, every n-dimensional polytope has a k-dimensional face.

Solution.

By Corollary 2 of the 8th lecture, the boundary of an n-dimensional polytope is the union of its

facets. Thus, P has a facet. Since the faces of a convex polytope are convex polytopes, and faces

of a face of P are faces of P (Proposition 3 in the 8th lecture), the second statement can be proved

by induction on the dimension.

Exercise 5. Prove that an (n − 2)-dimensional face of an n-dimensional polytope belongs to

exactly two facets.

Solution.

Let G be an (n− 2)-dimensional face of the n-dimensional polytope P ⊂ Rn, where, for simplicity,

we assume that o ∈ G. Let N be the set of the outer normal vectors of the supporting hyperplanes

containing G. Then N is a subset of the orthogonal complement (aff(G))⊥ of aff(G), which is a

2-dimensional plane. Thus, the orthogonal projection of P onto (aff(G))⊥ is a convex polygon, and
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G is one of its vertices. Furthermore, by N ⊆ (aff(G))⊥, the set of the outer normal vectors of

the supporting lines of this convex polygon at this vertex is N . Thus, the supporting hyperplane

perpendicular to a relative interior point of N intersects P in G, and the one perpendicular to a

point in either of the two rays forming the relative boundary of N is a proper face of P , respectively,
that strictly contains G. Thus, these two faces are facets containing G. On the other hand, the

outer normal vectors of any facet containing G lie in N , which shows that there are no more facets

of P containing G.

Exercise 6. (Diamond property) Let P be an arbitrary n-dimensional polytope, and F ⊂ G are

faces of P with dimF + 2 = dimG. Then P has exactly two faces F1, F2, di�erent from F and G,
that satisfy F ⊂ F1, F2 ⊂ G.

Solution.

Observe that the dimension of the faces satisfying the conditions is dim(F ) + 1 = dim(G) − 1.
Thus, the statement follows from applying the result of the previous exercise to the polytope G.
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