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Problem sheet 8 - Euler's theorem - Solutions

Exercise 1. Let P ⊂ Rn be an n-dimensional convex polytope. Let H be a hyperplane, passing

through an interior point of P , which does not contain any vertex of P . Let H+ be one of the

two open half spaces bounded by H, and let f+i denote the number of the i-dimensional faces of P
contained in H+. Then

n−1∑
i=0

(−1)if+i = 1.

Solution. Since H passes through the interior of P and does not contain any vertex, if it

intersects a k-dimensional face of P , then it cuts it into two k-dimensional parts, and the intersection

is (k − 1)-dimensional. Let P+
0 be the part of P lying in the closed half space H+ ∪H. Then P+

0

is an n-dimensional convex polytope with the (n− 1)-dimensional polytope P ∩H as a facet. We

denote the numbers of the i-dimensional faces of this polytope (0 ≤ i ≤ n − 2) by gi, and count

the i-dimensional faces of P+
0 .

(1) the faces of P contained in H+. Their number is f+i .

(2) The parts, in H+ ∪H, of the i-dimensional faces of P dissected by H. Since these faces are

in bijection with the (i − 1)-dimensional faces of H ∩ P , their number is gi−1 if i ≥ 1, and
zero if i = 0.

(3) The i-dimensional faces of P ∩H. Their number is gi if i ≤ n− 2, and zero if i = n− 1.

(4) The polytope H ∩ P itself is an (n− 1)-dimensional face of a P+
0 .

Since P+
0 is an n-dimensional polytope, we can apply Euler's theorem for it. By this,

(f+0 +g0)−(f+1 +g0+g1)+(f+2 +g1+g2)−. . .+(−1)n−2(f+n−2+gn−3+gn−2)+(−1)n−1(f+n−1+gn−2+1) =(
n−1∑
i=0

(−1)if+i

)
+ (−1)n−1 = 1 + (−1)n−1,

which implies the assertion.

Exercise 2. Let P ⊂ Rn be an n-dimensional convex polytope, and let f : Rn → R be a linear

functional with mutually di�erent values at the vertices of P . For any vertex x let fxi P denote

the number of the i-dimensional faces F of P that satisfy f(x) = max{f(y) : y ∈ F}. Prove that

n−1∑
i=0

(−1)ifxi =


1 if f(x) is the minimum of f on P,

(−1)n−1 if f(x) is the maximum of f on P,
0 otherwise .

Solution.

If f(x) is the minimum of f on P -n, then fx0 = 1 and fxi = 0 for all i > 0. Thus, in this case∑n−1
i=0 (−1)ifxi = 1.
Now, let f(x) be the maximum of f on P . According to our conditions, for any face F containing

x it is satis�ed that f is maximal on F at x, and thus in this case we need to count all faces of P
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containing x. Let H be a level surface of f that strictly separates x from any other vertex of P .
Then H intersects exactly those faces of P that contain x (apart from x), and its intersection with a

k-face containing x is a (k−1)-dimensional face if k ≥ 1. Since Q = H∩P is an (n−1)-dimensional

polytope, and the number of its i-dimensional faces is fxi+1, Euler's theorem yields

1 + (−1)n−2 =

n−2∑
i=0

(−1)ifxi+1 = −
n−1∑
i=1

(−1)ifxi .

But fx0 = 1, therefore (−1)n−1 =
∑n−1

i=0 (−1)ifxi .
Now, assume that f(x) is neither the minimum nor the maximum of f on P . Let H be the

level surface of f through x. Consider the (n − 1)-dimensional polytope Q = H ∩ P . As x is a

vertex of Q there is a `supporting hyperplane' G in H (i.e. an (n−2)-dimensional supporting a�ne

subspace) of Q satisfying G ∩ Q = {x}. Then H can be rotated (by a su�ciently small angle)

around G such that f is maximal at x on P ∩ H ′, where H ′ is the hyperplane obtained by the

rotation, but during the rotation the hyperplane does not pass through any vertex of P but x.
Let H ′− be the closed half space bounded by H ′ that contains all vertices of P at which f attains

a smaller value than f(x). Let P ′ = P ∩H ′− and Q′ = P ∩H ′. Then, for any 2 ≤ k ≤ n− 1, the
(k− 1)-dimensional faces of Q′ containing x are in bijection with the k-dimensional faces of P that

contain x and on which f is neither minimal nor maximal at x, and also with the k-dimensional

faces of P ′ that contain x and are not k-dimensional faces of P . Furthermore, f is maximal at x
on P ′, and, in particular , on Q′.

Now we count the faces of P ′ containing x. Let gi denote the number of i-dimensional faces of

Q′ containing x, and let gn−1 = 1. Then g0 = fx0 = 1, and every edge of P ′ that contains x either

lies in Q′, or it is an edge of P on which f is maximal at x, implying that their number is equal to

fx1 + g1. Finally, if 1 < i ≤ n − 1, then every face of P ′, obtained from a face of P by dissection

by H ′, corresponds to a face of Q′ with one less dimension, and hence, in this case the number of

i-dimensional faces of P ′ on which f is maximal at x is equal to fxi + gi + gi−1. By applying the

result of the previous case to the polytopes P ′ and Q′, we obtain that

(−1)n−1 = fx0 − (fx1 + g1) + (fx2 + g2 + g1)− . . .+ (−1)n−1(fxn−1 + gn−1 + gn−2) =(
n−1∑
i=0

(−1)ifxi

)
+ (−1)n−1,

which implies the statement.

Exercise 3. Let P ⊂ Rn be an n-dimensional convex polytope, and let F be a k-dimensional face

of P . Let fj(F, P ) denote the number of the j-dimensional faces of P containing F . Prove that

n−1∑
j=k

(−1)jfj(F, P ) = (−1)n−k−1.

Solution.

First, assume that k = 0, that is, F is a vertex {x}. Then there is a linear functional y 7→ 〈y, u〉
which is maximal at x on P .By varying the vector u we may assume that this linear functional

attains mutually di�erent values at the vertices of P . Then we may aply the second statement

from the previous exercise, which implies that if k = 0, then
∑n−1

j=0 (−1)jfj(F, P ) = (−1)n−1.
Now, assume that k > 0. Without loss of generality, let o ∈ F , and let X be the orthogonal

complement of aff(F ). Let p : Rn → X denote the orthogonal projection onto X. Then p(P ) is

a convex polytope with p(F ) as a vertex. Legyen G be an m-dimensional face of P containing
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F with m > k. If H is a supporting hyperplane of P satisfying F ⊂ H, then by the properties

of orthogonal projection, p(H) is a supporting hyperplane of p(P ) in X. Thus, p(G) is a face of

p(P ). Since aff(p(G)) = p(aff(G)), the dimension of p(G) is m− k. On the other hand, let H0 be

a supporting hyperplane of p(P ) in X which intersects p(P ) in an s-dimensional face containing

o. Then H0 + aff(F ) is a supporting hyperplane of P containing F . We show that this implies

that the intersection of H0 ∩ aff(F ) with P is of dimension s + k. This is the consequence of the

following lemma.

Lemma.

Let K ⊂ Rn be a compact, convex set, and let L be a k-dimensional linear subspace. If K ∩ L is

k-dimensional, and the projection of K onto the orthogonal projection of L is (n− k)-dimensional,

then K is n-dimensional.

Proof. If L ∩K is k-dimensional, then there are a�nely independent points p1, . . . , pk+1 ∈ L ∩K
in it. Similarly, if the projection of K onto L⊥ is (n − k)-dimensional, then there are a�nely

independent points q1, . . . , qn−k+1 ∈ L⊥ contained in the projection of K.By the latter property,

The preimages of the points qj can be written in the form qj +xj , where xj ∈ L. We show that the

a�ne hull of the points pi and qj+xj is Rn. For contradiction, assume that there is a nondegenerate

linear functional f : Rn → R which attains the same value at every pi and qj + xj . Assume that

this value is α ∈ R. As every point of L can be written as an a�ne combination of the points

p1, . . . , pk+1, it follows that f(x) = α for every x ∈ L. But o ∈ L, from which α = 0. Thus, for

every j, we have f(qj + xj) = f(qj) + f(xj) = 0, implying f(qj) = 0 for every j. But the points

q1, . . . , qn−k+1 are a�nely independent in L⊥, which yields that f(x) = 0 for every x ∈ L⊥. Every
point of Rn can be written in the form x1 + x2, where x1 ∈ L, x2 ∈ L⊥. Thus, f(x) = 0 for all

x ∈ Rn, which contradicts the choice of f .

The above statement implies that for every s-dimensional face of p(P ) containing o can be

uniquely assigned to an (s + k)-dimensional face of P containing F , and vice versa. Hence, the

number ofm-dimensional faces of P containing F coincides with the number of (m−k)-dimensional

faces of p(P ) containing o. Thus, the statement follows from the special case k = 0 proved in the

�rst part of the solution.

Exercise 4. The f -vector of an n-dimensional convex polytope is (f0, f1, . . . , fn−1, 1) ∈ Rn+1,

where fi denotes the number of the i-dimensional faces of the polytope. Show that the a�ne hull

of the set of the f -vectors of all 3-dimensional polytopes is a plane, or in other words, apart from

Euler's formula, there is no other nontrivial linear dependence relation between the face numbers

holding for every 3-dimensional polytope.

Solution.

Assume that the equality αv+βe+ γf = δ is satis�ed for every 3-dimensional convex polytope

with v vertices, e edges and f faces. The f -vectors of the �ve Platonic solids are (4, 6, 4, 1),
(8, 12, 6, 1), (6, 12, 8, 1), (20, 30, 12, 1) and (12, 30, 20, 1). Substituting their coordinates into the

above equation and solving the system of equations obtained in this way yields that the solution is

β = −α, γ = α with α ∈ R arbitrary.
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