Convex Geometry tutorial For students with mathematics major

Problem sheet 1 - Affine and convex combinations

Exercise 1. In the picture numbers denote lengths of segments. Express the points p, q, r as affine combinations of the points u, v, w.

Exercise 2. Let F_{1} and F_{2} be affine subspaces of \mathbb{R}^{n}. Assume that $F_{1} \cap F_{2} \neq \emptyset$. Prove that then $\operatorname{dim} F_{1}+\operatorname{dim} F_{2}-n \leq \operatorname{dim}\left(F_{1} \cap F_{2}\right)$.

Exercise 3. Let $K \subseteq \mathbb{R}^{n}$ be a convex set. Prove that int K and $\mathrm{cl} K$ are convex sets.
Exercise 4. Verify that the intersection of arbitrarily many convex sets is convex.
Exercise 5. Let $x_{1}, \ldots, x_{k} \in \mathbb{R}^{n}$, és $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k} \in \mathbb{R}$. Prove that the set

$$
P=\left\{y \in \mathbb{R}^{n}:\left\langle y, x_{i}\right\rangle \leq \alpha_{i}, i=1,2,3 \ldots, k\right\}
$$

is convex. Is it true in case of infinitely many inequalities?
Exercise 6. Let $S \subseteq \mathbb{R}^{n}$ be arbitrary. Let the kernel of S be the set of points x with the property that $[x, y] \subseteq S$ holds for any $y \in S$. Prove that the kernel of S is convex.

Exercise 7. Let $K \subseteq \mathbb{R}^{n}$ be convex, and let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be an invertible linear transformation. Prove that the set $T(K)=\{T(x): x \in K\}$ is convex. Prove that for the set P defined in Exercise 5 there are vectors $w_{1}, w_{2}, \ldots, w_{k} \in \mathbb{R}^{n}$ and numbers $\beta_{1}, \beta_{2}, \ldots, \beta_{k} \in \mathbb{R}$ such that

$$
T(P)=\left\{y \in \mathbb{R}^{n}:\left\langle y, w_{i}\right\rangle \leq \beta_{k}, i=1,2,2 \ldots, k\right\}
$$

