Convex Geometry tutorial For students with mathematics major

Problem sheet 2 - Convex hull, theorems of Radon and Carathéodory

Exercise 1. Prove that if $A \subseteq B$, then conv $A \subseteq \text{conv } B$.

Exercise 2. A set $S \subseteq \mathbb{R}^n$ is called a *convex cone* if it is convex and for every $x \in S$ the points $\lambda x, \lambda \geq 0$ are elements of S. Following the definition of convex combination and convex hull, define the conic combination of points and the conic hull of a set. Show that a conic hull is a convex cone, and it coincides with the set of the conic combinations of the finite subsets of the set.

Exercise 3. A set $K \subset \mathbb{R}^n$ is called *locally convex* if for every $p \in K$ there is some $\rho > 0$ such that the intersection of K with the ball $B(p, \rho)$ of radius ρ and center p is convex. Is it true that every locally convex set is convex?

Exercise 4. Give an example for a closed set $A \subseteq \mathbb{R}^2$ whose convex hull is not closed.

Exercise 5. Prove that the convex hull of an open set is open.

Exercise 6. Let $S \subset \mathbb{R}^n$ be a set consisting of n+2 points in general position (i.e. any n+1 of the points is affinely independent). Prove that then S can be uniquely decomposed into two disjoint subsets S_1, S_2 satisfying conv $S_1 \cap \text{conv } S_2 \neq \emptyset$. In addition, prove that in this case the intersection is a singleton.

Exercise 7. * Let $\sigma \in S_n$ be a permutation. Define the permutation matrix assigned to σ by $A_{\sigma} := (a_{ij})$, where

$$a_{ij} = \begin{cases} 1, & \text{if } \sigma(i) = j \\ 0, & \text{if } \sigma(i) \neq j. \end{cases}$$

A matrix $B = (b_{ij})$ is called *doubly stochastic*, if its entries are nonnegative, and the sum of the entries in each row and each column is one. Prove that the convex hull of the set of permutation matrices in \mathbb{R}^{n^2} is the set of doubly stochastic matrices. (Hint: try to reduce the problem to Hall's theorem for bipartite graphs)