Convex Geometry tutorial For students with mathematics major

Problem sheet 3 - Helly's theorem

Exercise 1. Show that the finite version of Helly's theorem does not hold for nonconvex sets.
Exercise 2. Give an example of a family of infinitely many closed, convex sets in \mathbb{R}^{n} with the property that any $n+1$ elements of the set intersect, but the intersection of all elements is empty.

Exercise 3. Give an example of a family of finitely many convex sets in the plane such that no two of them are disjoint, but the intersection of all of them is empty.

Exercise 4. Let \mathcal{F} be a finite family of convex sets in \mathbb{R}^{n}, and let L be an affine subspace in \mathbb{R}^{n}. Prove that if for any at most $n+1$ elements of \mathcal{F} a translate of L intersects all elements, then there is a translate of L that intersects all elements of \mathcal{F}.

Exercise 5. Let \mathcal{F} be a finite family of convex sets and let C be a convex set in \mathbb{R}^{n}. Prove that if, for any at most $(n+1)$ elements of \mathcal{F}, there is a translate of C that intersects/contains/is contained in all of them, then then there is a translate of C that intersects/contains/is contained in all elements of \mathcal{F}.

Exercise 6. *(Krasnosselsky's art gallery theorem) Let $S \subset \mathbb{R}^{n}$ be a compact set of at least $n+1$ points, and assume that for any $p_{1}, p_{2}, \ldots, p_{n+1}$ there is some $q \in S$ from which every p_{i} is visible, or in other words, $\left[p_{1}, q\right], \ldots,\left[p_{n+1}, q\right] \subseteq S$. Prove that then S is starlike, that is, it contains a point from which every point of S is visible.

