Convex Geometry tutorial
 for students with mathematics major

Problem sheet 7 - Polytopes, polyhedral sets, their face structures

Exercise 1. Prove that the extremal points of a polytope are also its exposed points.
Exercise 2. A proper face of a closed, convex set is its intersection with one of its supporting hyperplanes. Prove that a proper face of a polyhedral set is also a polyhedral set.

Exercise 3. Let $K=\left\{p:\left\langle p, u_{i}\right\rangle \geq \alpha_{i}, i \in I\right\}$, with $|I|<\infty$, be a bounded polyhedral set. For any point $p \in K$ let $I(p)=\left\{i:\left\langle p, u_{i}\right\rangle=\alpha_{i}\right\}$. Let $F=\left\{q \in K:\left\langle q, u_{i}\right\rangle=\alpha_{i}: i \in I(p)\right\}$. Prove that if we regard K as a face of itself, then F is the smallest face, with respect to inclusion, such that $p \in F$.

Exercise 4. Prove that every n-dimensional polytope has a facet. Prove that for every $k=$ $0,1, \ldots, n-1$, every n-dimensional polytope has a k-dimensional face.

Exercise 5. Prove that an $(n-2)$-dimensional face of an n-dimensional polytope belongs to exactly two facets.

Exercise 6. (Diamond property) Let P be an arbitrary n-dimensional polytope, and $F \subset G$ are faces of P with $\operatorname{dim} F+2=\operatorname{dim} G$. Then P has exactly two faces F_{1}, F_{2}, different from F and G, that satisfy $F \subset F_{1}, F_{2} \subset G$.

