Convex Geometry tutorial for students with mathematics major

Problem sheet 8 - Euler's theorem

Exercise 1. Let $P \subset \mathbb{R}^{n}$ be an n-dimensional convex polytope. Let H be a hyperplane, passing through an interior point of P, which does not contain any vertex of P. Let H^{+}be one of the two open half spaces bounded by H, and let f_{i}^{+}denote the number of the i-dimensional faces of P contained in H^{+}. Then

$$
\sum_{i=0}^{n-1}(-1)^{i} f_{i}^{+}=1
$$

Exercise 2. Let $P \subset \mathbb{R}^{n}$ be an n-dimensional convex polytope, and let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a linear functional with mutually different values at the vertices of P. For any vertex x let $f_{i}^{x} P$ denote the number of the i-dimensional faces F of P that satisfy $f(x)=\max \{f(y): y \in F\}$. Prove that

$$
\sum_{i=0}^{n-1}(-1)^{i} f_{i}^{x}=\left\{\begin{array}{cl}
1 & \text { if } f(x) \text { is the minimum of } f \text { on } P \\
(-1)^{n-1} & \text { if } f(x) \text { is the maximum of } f \text { on } P \\
0 & \text { otherwise }
\end{array}\right.
$$

Exercise 3. Let $P \subset \mathbb{R}^{n}$ be an n-dimensional convex polytope, and let F be a k-dimensional face of P. Let $f_{j}(F, P)$ denote the number of the j-dimensional faces of P containing F. Prove that

$$
\sum_{j=k}^{n-1}(-1)^{j} f_{j}(F, P)=(-1)^{n-1}
$$

Exercise 4. The f-vector of an n-dimensional convex polytope is $\left(f_{0}, f_{1}, \ldots, f_{n-1}, 1\right) \in \mathbb{R}^{n+1}$, where f_{i} denotes the number of the i-dimensional faces of the polytope. Show that the affine hull of the set of the f-vectors of all 3-dimensional polytopes is a plane, or in other words, apart from Euler's formula, there is no other nontrivial linear dependence relation between the face numbers holding for every 3-dimensional polytope.

