- urlstyle
- 1
-
L. Boróczki.
http://www.math.bme.hu/~boroczki/D-symbol.
- 2
-
A. Bölcskei and M. Szél-Koponyás.
Construction of D-graphs related to periodic tilings.
KoG, 6: 21-27, 2002.
- 3
-
O. Delgado-Friedrichs.
Euclidicity Criteria for Three-Dimensional Branched
Triangulations.
Ph.D. thesis, University of Bielefeld, 1994.
- 4
-
O. Delgado-Friedrichs.
Data structures and algorithms for tilings i.
Theor. Comput. Sci., 303(2-3): 431-445, 2003.
- 5
-
A. W. M. Dress.
Presentation of discrete groups acting on simply connected manifolds
in terms of parametrized systems of Coxeter matrices.
Advances in Math, 63: 196-212, 1987.
- 6
-
A. W. M. Dress, D. H. Huson and E. Molnár.
The classifications of face-transitive periodic three-dimensional
tilings.
Acta Crystallographica, A(49): 806-817, 1993.
- 7
-
W. D. Dunbar.
Geometric orbifolds.
Revista Mat. Univ. Complutense de Madrid, 1(1,2,3):
67-99, 1988.
- 8
-
D. H. Huson.
The generation and classification of tile-k-transitive tilings of the
Euclidean plane, the sphere and the hyperbolic plane.
Geometriae Dedicata, 47: 269-296, 1993.
- 9
-
Z. Lucic and E. Molnár.
Combinatorial classification of fundamental domains of finite area
for planar discontinous isometry groups.
Arch. Math., 54: 511-520, 1990.
- 10
-
A. M. Macbeath.
The classification of non-Euclidean plane crystallographic groups.
Canadian J. Math., 19: 1192-1205, 1967.
- 11
-
E. Molnár.
List of D-diagrams.
Kézirat.
- 12
-
E. Molnár.
Sketch of an algorithm (of linear comlexity) for determining
signature of the group
of a two-dimensional
Delaney-Dress-symbol.
Kézirat.
- 13
-
E. Molnár.
Symmetry breaking of the cube tiling and the spatials chess board by
D-symbols.
Beitr. Alg. Geom (Contributions to Algebra and Geometry),
35(2): 205-238, 1994.
- 14
-
E. Molnár.
Discontinous groups in homogeneous Riemannian spaces by
classification of D-symbols.
Publications Mathematicae, 49(3-4): 265-294, 1996.
- 15
-
E. Molnár, I. Prok and J. Szirmai.
Classification of tile-transitive 3-simplex tilings and their
realizations in homogeneous spaces.
Non-Euclidean Geometries, János Bolyai memorial volume,
Editors: A. Prékopa and E. Molnár, Springer.
Mathematics and its applications, 581: pp. 321-363,
2006.
- 16
-
W. P. Thurston.
Three-dimensional manifolds, Kleinian groups and hyperbolic
geometry.
Bull. Amer. Math. Soc., 6: 367-382, 1992.
- 17
-
E. B. Vinberg and O. V. Shvartsman.
Discrete transformation groups of spaces of constant curvature.
Encyclopedia of Math, 29, 1993.
Geometry II.
Boroczki Lajos
2007-05-29