## Zsolt Lángi's Homepage | |

Main |
Independent citations -
My Scholar Google profile
- A. Dumitrescu and C. D. Tóth,
*On the cover of the rolling stone*, Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms (2020), 2575-2586.● M. Ausserhofer, S. Dann, Z. Lángi and Géza Tóth, *An algorithm to find maximum area polygons circumscribed about a convex polygon*, Discrete Appl. Math.**255**(2019), 98-108. - S. Simić, S.D. Simić, Z. Banković, M. Ivkov-Simić, J.R. Villar and D. Simić,
*A Hybrid Automatic Classification Model for Skin Tumour Images*, In: H. Pérez García, L. Sánchez González, M. Castejón Limas, H. Quintián Pardo and E. Corchado Rodríguez (eds), Hybrid Artificial Intelligent Systems. HAIS 2019. Lecture Notes in Computer Science, vol 11734. Springer, Cham.● G. Domokos and Z. Lángi, *The isoperimetric quotient of a convex body decreases monotonically under the Eikonal abrasion model*, Mathematika**65**(2019), 119-129. - M.A. Hernández Cifre, E.S. Gómez,
*Isoperimetric relations for inner parallel bodies*, arXiv:1910.05367 [math.MG], October 11, 2019. - S. Larson,
*Asymptotic and universal spectral estimates with applications in many-body quantum mechanics and spectral shape optimization*, Ph.D. thesis, KTH Royal Institute of Technology, Stockholm, Sweden, 2019.● J. Frittmann and Z. Lángi, *Decompositions of a polygon into centrally symmetric pieces*, Mediterr. J. Math.**13**(2016), 3629-3649. - Gy. Kem. Nagy,
*Bracing zonohedra with special faces*, Ybl Journal of Built Environment**3**(2015), 88-95. - Gy. Kem. Nagy,
*Bracing rhombic structure by one-dimensional tensegrities*, Meccanica**52**(2017), 1283-1293. - Gy. Kem. Nagy,
*Repetitive skeletal structures controlled with bracing elements*, Computers&Structures**226**(2020), 10613.● Á. G.Horváth, Z. Lángi and M. Spirova, *Semi-inner products and the concept of semi-polarity*, Results Math.**71**(1) (2017), 127-144. - T. Jahn,
*An Invitation to Generalized Minkowski Geometry*, PhD. thesis, University of Technology in Chemnitz, Germany, 2019. - V. Balestro. H. Martini and R. Teixeira,
*Convex analysis in normed spaces and metric projections onto convex bodies*, arXiv:1908.08742, [math.MG], [math:FA], August 23, 2019. - V. Balestro. H. Martini and R. Teixeira,
*Duality of gauges and symplectic forms in vector spaces*, arXiv:1901.03421, [math.MG], [math:FA], [math:SG], January 10, 2019. - W.D. Richter,
*Statistical reasoning in dependent p-generalized elliptically contoured distributions and beyond*, J. Stat. Distrib. App.**4**(2017), 21. - T. Jahn,
*Orthogonality in generalized Minkowski spaces*, J. Conv. Anal.**26**(2019), 49-76. - V. Balestro, H. Martini and R. Teixeira,
*A new construction of Radon curves and related topics*, Aequationes Math.**90**(2016), 1013-1024.● K. Bezdek and Z. Lángi, *On non-separable families of positive homothetic convex bodies*, Discrete Comput. Geom.**56**(2016), 802-813. - A. Akopyan, A. Balitskiy and M. Grigorev,
*On the Circle Covering Theorem by A. W. Goodman and R. E. Goodman*, Discrete Comput. Geom.**59**(2018), 1001-1009. - R. Brandenberg and B.G. Merino,
*Minkowski concentricity and complete simplices*, J. Math. Anal. Appl.**454**(2017), 981-994.● G. Domokos, Z. Lángi and T. Szabó, *A topological classification of convex bodies*, Geom. Dedicata**182**(2016), 95-116. - Q. R. Kápolnai,
*Restricted generation of quadrangulations and scheduling parameter sweep applications*, Ph.D. thesis, Budapest Univ. of Technology, Budapest, Hungary, 2014. - P.L. Várkonyi,
*Static equilibria and transient dynamics of rigid bodies with unilateral contacts*, Doctor of the Hungarian Academy of Sciences thesis, Budapest, Hungary, 2016. - A. Dumitrescu and C. D. Tóth,
*On the cover of the rolling stone*, Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms (2020), 2575-2586.● G. Domokos and Z. Lángi *On the average number of normals through points of a convex body*, Studia Sci. Math. Hungar.**52**(2015), 457-476. - H. Martini, L. Montejano and D. Oliveros,
*Bodies of Constant Width*, Birkhäuser, Cham, 2019.● K. Bezdek and Z. Lángi, *Density bounds for outer parallel domains of unit ball packings*, Proc. Steklov Inst. Math.**288**(2015), 209-225. - M.A. Khan,
*Some Problems on Graphs and Arrangements of Convex Bodies*, Ph.D. thesis, University of Calgary, Calgary, Canada, 2017. - M. Senechal,
*Crystals, periodic and aperiodic*, In: Handbook of Discrete and Computational Geometry, edited by J.E. Goodman, J. O'Rourke and C.D. Tóth, CRC Press LLC, Boca Raton, FL, ISBN 9781498711395 - H. Edelsbrunner and M. Iglesias-Ham,
*On the optimality of the FCC lattice for soft sphere packings*, SIAM J. Discrete Math.**32**(2018), 750-782.● M. Hujter and Z. Lángi, *On the multiple Borsuk numbers of sets*, Israel J. Math.**199**(2014), 219-239. - H. Martini, L. Montejano and D. Oliveros,
*Bodies of Constant Width*, Birkhäuser, Cham, 2019. - G. Kalai,
*Some old and new problems in combinatorial geometry I: Around Borsuk’s problem*, Surveys in Combinatorics, London Mathematical Society Lecture Notes**424**(2015), 147-174. - M. Naszódi,
*Flavors of translative coverings*, in: New Trends in Intuitive Geometry, Bolyai Society Mathematical Studies**27**, Springer-Verlag, Berlin, Germany, 2018, 335-358.● Á. G.Horváth and Z. Lángi, *On the volume of the convex hull of two convex bodies*, Monatsh. Math.**174**(2014), 219-229. - J. Jeronimo-Castro,
*The volume of the convex hull of a body and its homothetic copies*, Amer. Math. Monthly**122**(2015), 486-489.● Z. Lángi, *On the perimeters of simple polygons contained in a plane convex body*, Beiträge Algebra Geom.**54**(2013), 643-649. - A. Akopyan and V. Vysotsky,
*On length of curves passing through boundary points of a planar convex shape*, Amer. Math. Monthly**124**(2017), 588-596.● Z. Lángi, M. Naszódi and I. Talata, *Ball and spindle convexity with respect to a convex body*, Aequationes Math.**85**(2013), 41-67. - V. Bui and R. Karasev,
*On the Carathéodory number for strong convexity*, Discrete Comput. Geom. (2020), DOI: 10.1007/s00454-019-00169-9 - K. Bezdek,
*Volumetric bounds for intersections of congruent balls*, arXiv:1912.05118 [math.MG], December 11, 2019. - N. Robock,
*From convexity to r-Convexity*, Master's thesis, University of Calgary, Calgary AB, Canada, 2019. - T. Jahn,
*An Invitation to Generalized Minkowski Geometry*, PhD. thesis, University of Technology in Chemnitz, Germany, 2019. - F. Fodor D.I. Papvári and V. Vígh,
*On random approximations by generalized disc-polygons*, arXiv:1907.01868 [math.MG], [math:PR], July 3, 2019. - H. Martini, L. Montejano and D. Oliveros,
*Bodies of Constant Width*, Birkhäuser, Cham, 2019. - K. Bezdek,
*On the intrinsic volumes of intersections of congruent balls*, Discrete Optimization (2019), DOI: 10.1016/j.disopt.2019.03.002. - L. Yuan, T. Zamfirescu and Y. Zhang,
*Selfishness of convex bodies and discrete point sets*, European J. Combin.**80**(2019), 416-431. - K. Bezdek,
*From r-dual sets to uniform contractions*, Aequationes Math.**92**(2018), 123-134. - T. Jahn, C. Richter and H. Martini,
*Ball convex bodies in Minkowski spaces*, Pacific J. Math.**289**(2017), 287–316. - F. Fodor, Á. Kurusa and V. Vígh,
*Inequalities for hyperconvex sets*, Adv. Geom.**16**(2016), 337–348.● Z. Lángi, *Ellipsoid characterization theorems*, Adv. Geom.**13**(2013), 145-154. - J. Jeronimo-Castro, G. Ruiz-Hernandez and S. Tabachnikov,
*The equal tangents property*, Adv. Geom.**14**(2014), 447-453.● G. Domokos, Z. Lángi and T. Szabó, *On the equilibria of finely discretized curves and surfaces*, Monatsh. Math.**168**(2012), 321-345. - A. Dumitrescu and C. D. Tóth,
*On the cover of the rolling stone*, Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms (2020), 2575-2586. - Q. Ashton Acton,
*Issues in General and Specialized Mathematics Research*, Scholarly Editions, Atlanta, Georgia, 2013. - Q. R. Kápolnai,
*Restricted generation of quadrangulations and scheduling parameter sweep applications*, Ph.D. thesis, Budapest Univ. of Technology, Budapest, Hungary, 2014. - P.L. Várkonyi,
*Estimating part pose statistics with application to industrial parts feeding and shape design: new metrics, algorithms, simulation experiments and datasets*, IEEE Trans. Autom. Sci. Eng.**11**(3) (2014), 658-667.● Á. G. Horváth and Z. Lángi, *Kombinatorikus geometria*, lecture notes, 146 pages, Polygon jegyzettár sorozat, Polygon, Szeged, Hungary, 2012. - T. Zarnócz,
*4-dimenziós centrális tulajdonságú politópok*, BSc thesis, University of Szeged, 2012.● Z. Lángi, *On the Hadwiger numbers of starlike disks*, European J. Comb.**32**(2011), 1203-1211. - G. Fejes Tóth,
*Packing and covering*, In: Handbook of Discrete and Computational Geometry, edited by J.E. Goodman, J. O'Rourke and C.D. Tóth, CRC Press LLC, Boca Raton, FL, ISBN 9781498711395● Z. Lángi, *On the perimeters of simple polygons contained in a disk*, Monatsh. Math.**162**(2011), 61-67. - A. Dumitrescu,
*Metric inequalities for polygons*, J. Comput. Geom.**4**(2013), 79-93. - A. Glazyrin and F. Morić,
*Upper bounds for the perimeter of plane convex bodies*, Acta Math. Hungar.**142**(2014), 366-383.● Z. Lángi, *On diagonalizable operators in Minkowski spaces with the Lipschitz property*, Lin. Alg. Appl.**433**(2010), 2161-2167, - Á. G.Horváth,
*Convexity and non-Euclidean geometries*, Doctor of Science thesis, Hungarian Academy of Sciences, Hungary, 2017, 143 pages, - Á. G.Horváth,
*Constructive curves in non-Euclidean geometries*, Studies of the University of Zilina**28**, (2016) 13-42. - Á. G.Horváth,
*Isometries of Minkowski geometries*, Lin. Alg. Appl.**512**(1) (2017), 172-190. - H. Martini and S. Wu,
*Classical curve theory in normed planes*, Comput. Aided Geom. Design**31**(2014), 373-397.● K. Dehnhardt, H. Harborth and Z. Lángi, *A partial proof of the Erdős-Szekeres Conjecture for hexagons*, J. Pure Appl. Math., Adv. Appl.**2**(1) (2009), 69-86. - F. Marić,
*Fast formal proof of the Erdős–Szekeres Conjecture for convex polygons with at most 6 points*, J. Autom. Reasoning**62**(2019), 301-329. - W. Morris and V. Soltan,
*The Erdős-Szekeres problem*, In: Open Problems in Mathematics, edited by F.J. Nash, Jr. and Th.M. Rassias, Springer International Publishing, New York, 2016, pp. 351-375. - Liping Wu and Wanbing Lu,
*On the minimum cardinality of a planar point set containing two disjoint convex polygons*, Studia Sci. Math. Hungar.**50**(3) (2013), 331-354. - M. Shigeta and K. Amano,
*On the structure of extremal point sets for Erdős-Szekeres Problem*, IEICE Trans. Fundamentals (Japanese Edition)**J96-A**(7) (2013), 440-451.● Z. Lángi and M. Naszódi, *On the Bezdek-Pach conjecture for centrally symmetric convex bodies*, Canad. Math. Bull.**53**(3) (2009), 407-415. - V. Földvári,
*Bounds on convex bodies in pairwise intersecting Minkowski arrangement of order μ*, arXiv:1806.11069 [math.MG], June 28, 2018. - K.J. Swanepoel,
*Combinatorial distance geometry in normed spaces*, In: New Trends in Intuitive Geometry. Bolyai Society Mathematical Studies**27**, Springer-Verlag, Berlin, Germany, 2018, 407-458. - A. Polyanskii,
*Pairwise intersecting homothets of a convex body*, Discrete Math.**340**(2017), 1950-1956. - K. Bezdek,
*Classical Topics in Discrete Geometry*, CMS Books in Mathematics, Springer, New York, 2010.● Z. Lángi, *On the Hadwiger numbers of centrally symmetric starlike disks*, Beiträge Algebra Geom.**50**(1) (2009), 249-257. - G. Fejes Tóth,
*Packing and covering*, In: Handbook of Discrete and Computational Geometry, edited by J.E. Goodman, J. O'Rourke and C.D. Tóth, CRC Press LLC, Boca Raton, FL, ISBN 9781498711395● K. Bezdek, Z. Lángi, M. Naszódi and P. Papez, *Ball-polyhedra*, Discrete Comput. Geom.**38**(2007), 201-230, SCI. - V. Bui and R. Karasev,
*On the Carathéodory number for strong convexity*, Discrete Comput. Geom. (2020), DOI: 10.1007/s00454-019-00169-9 - N. Robock,
*From convexity to r-Convexity*, Master's thesis, University of Calgary, Calgary AB, Canada, 2019. - T. Jahn,
*An Invitation to Generalized Minkowski Geometry*, PhD. thesis, University of Technology in Chemnitz, Germany, 2019. - F. Fodor D.I. Papvári and V. Vígh,
*On random approximations by generalized disc-polygons*, arXiv:1907.01868 [math.MG], [math:PR], July 3, 2019. - F. Fodor,
*Random ball-polytopes in smooth convex bodies*, arXiv:1906.11480 [math.MG], June 27, 2019. - L. Montejano, E. Pauli, M. Raggi, E. Roldán-Pensado,
*The graphs behind Reuleaux polyhedra*, arXiv:1904.12761, [cs.CG], [math.CO], April 29, 2019. - H. Martini, L. Montejano and D. Oliveros,
*Bodies of Constant Width*, Birkhäuser, Cham, 2019. - R. Chernov, K, Drach and K. Tatarko,
*A sausage body is a unique solution for a reverse isoperimetric problem*, Adv. Math.**353**(2019), 431-445. - L. Yuan, T. Zamfirescu and Y. Zhang,
*Selfishness of convex bodies and discrete point sets*, European J. Combin.**80**(2019), 416-431. - F. Fodor and V. Vígh,
*Variance estimates for random disc-polygons in smooth convex discs*, J. Appl. Prob.**55**(2018), 1143-1157. - P. Martín, H. Martini and M. Spirova,
*Ball hulls, ball intersections and 2-center problems for gauges*, Contrib. Discrete Math.**12**(2017), 146-157 - M.A. Khan,
*Some Problems on Graphs and Arrangements of Convex Bodies*, Ph.D. thesis, University of Calgary, Calgary, Canada, 2017. - L. Montejano, E. Roldán-Pensado,
*Meissner Polyhedra*, Acta Math. Hungar.**151**(2) (2017), 482–494. - T. Jahn, C. Richter and H. Martini,
*Ball convex bodies in Minkowski spaces*, Pacific J. Math.**289**(2017), 287–316. - G. Paouris and P. Pivovarov,
*Random ball-polyhedra and inequalities for intrinsic volumes*, Monatsh. Math.**182**(3) (2017), 709-729. - G. Kalai,
*Some old and new problems in combinatorial geometry I: Around Borsuk’s problem*, Surveys in Combinatorics, London Mathematical Society Lecture Notes**424**(2015), 147-174. - F. Fodor, Á. Kurusa and V. Vígh,
*Inequalities for hyperconvex sets*, Adv. Geom.**16**(2016), 337–348. - G. Fejes Tóth and F. Fodor,
*Dowker-type theorems for hyperconvex discs*, Period. Math. Hungar.**70**(2015), 131-144. - F. Fodor, P. Kevei, and V. Vígh,
*On random disc-polygons in smooth convex discs*, Adv. Appl. Probab.**46**(2014), 899-918. - F. Fodor and V. Vígh,
*Disk-polygonal approximations of planar spindle convex sets*, Acta Sci. Math. (Szeged)**78**(2012), 331-350. - M. Spirova,
*Discrete Geometry in Normed Spaces*, habilitation thesis, University of Technology in Chemnitz, Chemnitz, Germany, 2010. - M. Spirova,
*On a theorem of G. D. Chakerian*, Contrib. Discrete Math.**5**(1) (2010), 107-118 - P. K. Agarwal, R. Ben-Avraham and M. Sharir,
*The 2-center problem in three dimensions*, Proceedings of the 2010 annual symposium on Computational geometry, ACM, New York, 2010, pp. 87-96. - Y. S. Kupitz, H. Martini and M. A. Perles,
*Ball polytopes and the Vazsonyi Problem*, Acta Math. Hungar.**126**(1-2) (2010), 99-163. - H. Martini and M. Spirova,
*On the circular hull property in normed planes*, Acta Math. Hungar.**125**(3) (2009), 275-285. - M. Bezdek,
*On a generalization of the Blaschke-Lebesgue theorem for disk-polygons*, Contrib. Discrete Math.**6**(1) (2011), 77-85. - H. Maehara and N. Tokushige,
*From line-systems to sphere-systems - Schläfli's double six, Lie's line-sphere transformation, and Grace's theorem*, European J. Combin.**30**(2009), 1337-1351.● A. Joós and Z. Lángi, *On the relative distances of seven points in a plane convex body*, J. Geom.**87**(2007), 83-95. - Zhanjun Su, Sipeng Li, Jian Shen and Liping Yuan,
*On the relative distances of nine or ten points in the boundary of a plane convex body*, Discrete Appl. Math.**160**(2012), 303-305. - Zhenhua Wu and Yu Hen Hu,
*How many wireless resources are needed to resolve the hidden terminal problem*, Computer Networks**57**(2013), 3987-3996. - Zhanjun Su, Xianglin Wei, Sipeng Li and Jian Shen,
*On the relative distances of eleven points in the boundary of a plane convex body*, Discrete Math.**317**(2014), 14-18. - Xiao-ling Li, Su-mei Zhang, Geng-sheng Zhang, Jian Shen,
*The locus of points with equal sum of relative distances to three points*, J. Math.**36**(2016), 759-766.● B. Csikós, Z. Lángi and M. Naszódi, *A generalization of the Discrete Isoperimetric Inequality for piecewise smooth curves of constant geodesic curvature*, Period. Math. Hungar.**53**(1-2) (2006), 121-131. - F. Fodor, Á. Kurusa and V. Vígh,
*Inequalities for hyperconvex sets*, Adv. Geom.**16**(2016), 337–348. - K. Bezdek and S. Reid,
*Contact graphs of unit sphere packings*, J. Geom.**103**(2013), 57-83.● K. Böröczky and Z. Lángi, *On the relative distances of six points in a plane convex body*, Stud. Sci. Math. Hungar.**42**(3) (2005), 253-264. - P. Brass, W. Moser and J. Pach,
*Research Problems in Discrete Geometry*, Springer, New York, 2005. - K. Böröczky, Jr.,
*Finite Packing and Covering*, Cambridge Tracts in Mathematics**154**, Cambridge University Press, Cambridge, 2004. - Zhanjun Su, Sipeng Li, Jian Shen and Liping Yuan,
*On the relative distances of nine or ten points in the boundary of a plane convex body*, Discrete Appl. Math.**160**(2012), 303-305. - A. Joós,
*Pontok pakolása konvex alakzatokba*, Ph.D. thesis, Eötvös University, Budapest, Hungary, 2007. - Zhanjun Su, Xianglin Wei, Sipeng Li and Jian Shen,
*On the relative distances of eleven points in the boundary of a plane convex body*, Discrete Math.**317**(2014), 14-18. - Xiao-ling Li, Su-mei Zhang, Geng-sheng Zhang, Jian Shen,
*The locus of points with equal sum of relative distances to three points*, J. Math.**36**(2016), 759-766.● Z. Lángi, *On seven points in the boundary of a plane convex body in large relative distances*, Beiträge Algebra Geom.**45**(1) (2004), 275-281. - E. M. Bronshteǐn,
*Approximation of convex sets by polyhedra (Russian)*, Sovrem Mat. Fundam. Napravl.**22**(2007), 5-37, translation in J. Math. Sci.**153**(2008), 727-762. - M. Lassak,
*Packing an n-dimensional convex body by n+1 homothetical copies*, Revue Roumaine de Mathematiques Pures et Appliquees,**51**(2006), 43-47. - M. Lassak,
*Packing a planar convex body with three homothetical copies and inscribing relatively equilateral triangles*, Adv. Geom.**5**(2005), 325-332. - P. Brass, W. Moser and J. Pach,
*Research Problems in Discrete Geometry*, Springer, New York, 2005. - M. Lassak,
*On relatively equilateral polygons inscribed in a convex body*, Publ. Math. Debrecen**65**(2004), 133-148.● Z. Lángi, *Relative distance of points of a convex body*, Ph.D. thesis, Eötvös University, Budapest, Hungary, 2003. - Zhanjun Su, Xianglin Wei, Sipeng Li and Jian Shen,
*On the relative distances of eleven points in the boundary of a plane convex body*, Discrete Math.**317**(2014), 14-18. - Zhanjun Su, Sipeng Li, Jian Shen and Liping Yuan,
*On the relative distances of nine or ten points in the boundary of a plane convex body*, Discrete Appl. Math.**160**(2012), 303-305. - Wenhua Lan and Zhanjun Su,
*On a conjecture about nine points in the boundary of a plane convex body at pairwise relative distances not greater than 4sin(π/18)*, J. Geom.**96**(2009), 119-123.● Z. Lángi and M. Lassak, *Relative distance and packing a body by homothetical copies*, Geombinatorics**13**(2003), 29-40. - P. Brass, W. Moser and J. Pach,
*Research Problems in Discrete Geometry*, Springer, New York, 2005. - H. Martini, L. Montejano and D. Oliveros,
*Bodies of Constant Width*, Birkhäuser, Cham, 2019.● Z. Lángi, *On the relative lengths of sides of convex polygons*, Stud. Sci. Math. Hungar.**40**(2003), 115-120, SCI. - Wenhua Lan and Zhanjun Su,
*On a conjecture about nine points in the boundary of a plane convex body at pairwise relative distances not greater than 4sin(π/18)*, J. Geom.**96**(2009), 119-123. - Zhanjun Su and Ren Ding,
*On the relative lengths of the sides of convex polygons*, Adv. Geom.**8**(2008), 107-110. - Xianglin Wei and Ren Ding,
*On relatively short sides of convex hexagons*, Ars Combin.**85**(2007), 155-160. - K. Böröczky, Jr.,
*Finite Packing and Covering*, Cambridge Tracts in Mathematics**154**, Cambridge University Press, Cambridge, 2004. - Zhanjun Su, Sipeng Li, Jian Shen and Liping Yuan,
*On the relative distances of nine or ten points in the boundary of a plane convex body*, Discrete Appl. Math.**160**(2012), 303-305. - Zhanjun Su, Xianglin Wei, Sipeng Li and Jian Shen,
*On the relative distances of eleven points in the boundary of a plane convex body*, Discrete Math.**317**(2014), 14-18.● Z. Lángi and M. Lassak, *On four points of a convex body in large relative distances*, Geombinatorics**XII**(4) (2003), 184-190. - Wenhua Lan and Zhanjun Su,
*On a conjecture about nine points in the boundary of a plane convex body at pairwise relative distances not greater than 4sin(π/18)*, J. Geom.**96**(2009), 119-123. - Zhanjun Su, Sipeng Li, Jian Shen and Liping Yuan,
*On the relative distances of nine or ten points in the boundary of a plane convex body*, Discrete Appl. Math.**160**(2012), 303-305. - Zhanjun Su, Xianglin Wei, Sipeng Li and Jian Shen,
*On the relative distances of eleven points in the boundary of a plane convex body*, Discrete Math.**317**(2014), 14-18. - Xiao-ling Li, Su-mei Zhang, Geng-sheng Zhang, Jian Shen,
*The locus of points with equal sum of relative distances to three points*, J. Math.**36**(2016), 759-766.● K. Bezdek and Z. Lángi, *On almost equidistant points on S*, Period. Math. Hungar.^{ d-1}**39**(1-3) (1999), 139-144. - O. Ahmadi and A. Mohammadian,
*Sets with many orthogonal vectors over finite fields*, Finite Fields Appl.**37**(2016), 179-192. - M. Balko, A. Pór, M. Scheucher, K. Swanepoel and P. Valtr,
*Almost equidistant sets*, arXiv:1706.06375 [math.MG], [math.CO], June 20, 2017. - A. Polyanskii,
*On almost-equidistant sets*, Lin. Alg. Appl.**563**(2019), 220-230. - A. Kupavskii, N.H. Mustafa and K.J. Swanepoel,
*Bounding the size of an almost-equidistant set in Euclidean space*, Combinatorics, Probability and Computing (2018), ISSN 0963-5483, DOI:10.1017/S0963548318000287 - A. Polyanskii,
*On almost-equidistant sets - II*, Electron. J. Combin.**26**(2019), P2.14.
My MathSciNet profile My MTMT profile ● G. Domokos, F. Kovács, Z. Lángi, K. Regős and P.T. Varga, Last refreshed on September 15, 2011 |

Curriculum vitae | |

Publications | |

Presentations | |

Citations | |

Teaching/Tanítás | |

Contact Information | |

Elérhet?ség | |

Links/Linkek | |