Zsolt Lángi's Homepage

Main

Independent citations

    My Scholar Google profile
    My MathSciNet profile
    My MTMT profile

    B. Basit, S. Hoehner, Z. Lángi and J. Ledford, Steiner symmetrization on the sphere, arxiv:2406.10614, [math.MG], June 15, 2024.

  1. Y. Lin and Z. Deng, Spherical Steiner symmetrization, Axioms 13(11) (2024), 751.
  2. F. Besau and E.M. Werner, The Lp-floating area, curvature entropy, and isoperimetric inequalities on the sphere, arXiv:2411.01631, (math.MG), November 3, 2024.

    B. Ludmány, Z. Lángi and G. Domokos, Morse-Smale complexes on convex polyhedra, Period. Math. Hungar. 89 (2024), 1-22.

  3. J.F. Peters, T.U. Liyanage, Energy Dissipation in Hilbert Envelopes on Motion Waveforms Detected in Vibrating Systems: An Axiomatic Approach, arXiv:2409.19016, (physics.gen-ph), 24 Sept. 2024.

    ● K. Bezdek and Z. Lángi, From the separable Tammes problem to extremal distributions of great circles in the unit sphere, Discrete Comput. Geom., DOI: 0.1007/s00454-023-00509-w

  4. X. Li et al, Energy sharing mechanism for freeform robots utilizing conductive spherical sliding surfaces, 2024 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Abu Dhabi, United Arab Emirates, 2024, pp. 10762-10769, doi: 10.1109/IROS58592.2024.10801706.
  5. A.L. Kazakov, A.A. Lempert, D.M. Nguyen, On covering of cylindrical and conical surfaces with equal balls, Bulletin of Irkutsk State University. Series Mathematics, 48 (2024), 34–48.
  6. N.D. Min, Numerical algorithm for covering surfaces of revolution by balls with equal radii, Modern Technologies and Scientific and Technological Progress 2024(1) (2024), 156-158.
  7. G. Fejes Tóth, L. Fejes Tóth and W. Kuperberg, Lagerungen, Arrangements in the Plane, on the Sphere, and in Space, Grundlehren der mathematischen Wissenschaften 360, Springer Cham, 2023.
  8. Z.R. Zeng, W. Peng and D. Zeng, Improving the Stability of Intrusion Detection with Causal Deep Learning, IEEE Trans. Netw. Service Manag. 19 (2022), 4750-4763, DOI: 10.1109/TNSM.2022.3193099.

    ● A. Joós and Z. Lángi, Isoperimetric problems for zonotopes, Mathematika 69 (2023), 508-534.

  9. J.W. Siegel, Optimal approximation of zonoids and uniform approximation by shallow neural networks, arXiv:2307.15285 [stat.ML], July 28, 2023.

    ● B. Basit and Z. Lángi, Discrete isoperimetric problems in spaces of constant curvature, Mathematika 69 (2023), 33-50.

  10. Y. Lin and Z. Deng, Spherical Steiner symmetrization, Axioms 13(11) (2024), 751.

    ● M. Fradelizi, Z. Lángi and A. Zvavitch, Volume of the Minkowski sums of star-shaped sets, Proc. Amer. Math. Soc. Ser. B 9 (2022), 358-372.

  11. M. Meyer, Measuring the convexity of compact sumsets with the Schneider non-convexity index, arXiv:2405.00221, [math.MG][math.CO], April 30, 2024.
  12. J. Ulivelli, Modern aspects of convexity and the interplay between geometry and analysis, PhD thesis, Sapienza University, Rome, 2023.
  13. T. Shafa, R. Dong and M. Ornik, Identifying single-input linear system dynamics from reachable sets, 62nd IEEE Conference on Decision and Control (CDC), Singapore, (2023), pp. 3527-3532, DOI:10.1109/CDC49753.2023.10384274
  14. F. Barthe and M. Madiman, Volumes of subset Minkowski sums and the Lyusternik region, Discrete Comput. Geom. (2023), DOI: 10.1007/s00454-023-00606-w
  15. M. Meyer, Equality conditions for the fractional superadditive volume inequalities, Discrete Comput. Geom. DOI:0.1007/s00454-024-00672-8
  16. Sh. Artstein-Avidan, T. Falah and B. A. Slomka, Boundary restricted Brunn-Minkowski inequalities, Commun. Contemp. Math. (2023), DOI: 10.1142/S0219199723500566
  17. J. Ulivelli, Generalization of Klain's theorem to Minkowski symmetrization of compact sets and related topics, Canad. Math. Bull. 66 (2023), 124–141, DOI:10.4153/S0008439521000904

    S.M. Almohammad, Z. Lángi and M. Naszódi, An analogue of a theorem of Steinitz for ball polyhedra in R3, Aequationes Math. 96 (2022), 403-415.

  18. N. Mercanti et al., Enhancing wine shelf-life: insights into factors influencing oxidation and preservation, Heliyon (2024), DOI:10.1016/j.heliyon.2024.e35688
  19. H. Maehara and H. Martini, Circles, Spheres and Spherical Geometry, Birkhäuser Advanced Texts Basler Lehrbücher. Birkhäuser, Cham, 2024.

    M. Kadlicskó and Z. Lángi, On generalized Minkowski arrangements, Ars Math. Contemp. (2022), DOI:10.26493/1855-3974.2550.d96.

  20. G. Fejes Tóth, L. Fejes Tóth and W. Kuperberg, Lagerungen, Arrangements in the Plane, on the Sphere, and in Space, Grundlehren der mathematischen Wissenschaften 360, Springer Cham, 2023.

    ● G. Domokos and Z. Lángi, Plato's error and a mean field formula for convex mosaics, Axiomathes 32 (2022), 889–905, DOI: 10.1007/s10516-019-09455-w.

  21. L. Albertazzi, One and More Space, Axiomathes 32 (2022), 733–742, DOI:10.1007/s10516-021-09559-2

    ● G. Domokos and Z. Lángi, On some average properties of convex mosaics, Experiment. Math. 31(3) (2022), 783-793, DOI:10.1080/10586458.2019.1691090.

  22. T.P. Nagle-McNaughton and L. Scuderi, Networked configurations as an emergent property of transverse aeolian ridges on Mars, Commun. Earth Environ. 2(1) (2021), article 217.

    ● Z. Lángi, A solution to some problems of Conway and Guy on monostable polyhedra, Bull. Lond. Math. Soc. 54(2) (2022), 501-516, DOI:10.1112/blms.12579.

  23. G. Domokos and F. Kovács, Conway's spiral and a discrete Gömböc with 21 point masses, Amer. Math. Monthly 130 (2023), 795-807, DOI:10.1080/00029890.2023.2241336

    ● G. Domokos, Z. Lángi and A.Á. Sipos, Tracking critical points on evolving curves and surfaces, Experiment. Math. 31 (2022), 1-20.

  24. Y. Shokoohi, Signal and vibration analysis via motion vibration waveforms in video frames, MSc thesis, University of Manitoba, 2024.

    ● Z. Lángi, An isoperimetric problem for three-dimensional parallelohedra, Pacific J. Math. 316 (2022), 169–181.

  25. A. Cesaroni and M. Novaga, Minimal periodic foams with fixed inradius, arXiv:2407.07534, (math.AP), 10 Jul 2024.
  26. A. Naor and O. Regev, An integer parallelotope with small surface area, J. Funct. Anal. 285 (2023), 110122.
  27. A. Freyer, Aspects of Volume of Convex Bodies: Discretization, Subspace Concentration and Polarity, PhD thesis, TU Berlin, 2023.

    ● Á. G.Horváth and Z. Lángi, On the convex hull and homothetic convex hull functions of a convex body, Geom. Dedicata 216 (2022), article number: 10.

  28. Y. Lu and J.-Z. Xiao, Volumes of s-Orlicz convex simplices and geometric inequalities in higher dimensional spaces, J. Math. Anal. Appl. 530 (2024), 127650, DOI:10.1016/j.jmaa.2023.127650.

    ● D. Frettlöh, A. Glazyrin and Z. Lángi, Hexagon tilings of the plane that are not edge-to-edge, Acta Math. Hungar. 164 (2021), 341-349.

  29. G. Fejes Tóth, L. Fejes Tóth and W. Kuperberg, Lagerungen, Arrangements in the Plane, on the Sphere, and in Space, Grundlehren der mathematischen Wissenschaften 360, Springer Cham, 2023.

    ● Z. Lángi, Centering Koebe polyhedra via Möbius transformations, Groups Geom. Dyn. 15 (2021), 197-221.

  30. A. Izosimov, Change of polytope volumes under Möbius transformations and the circumcenter of mass, Discrete Comput. Geom., DOI: 10.1007/s00454-022-00481-x

    ● G. Domokos, F. Kovács, Z. Lángi, K. Regős and P.T. Varga, Balancing polyhedra, Ars Math. Contemp., 19 (2020), 95-124.

  31. M. Senechal,The Gömböc Pill, continuing ..., Math Intelligencer 44 (2022), 119–122.
  32. A. Dumitrescu and C. D. Tóth, On the cover of the rolling stone, Proceedings of the 31st Annual ACM-SIAM Symposium on Discrete Algorithms (2020), 2575-2586.

    ● K. Bezdek and Z. Lángi, From spherical to Euclidean illumination, Monatsh. Math. 192 (2020), 483-492

  33. G. Fejes Tóth, L. Fejes Tóth and W. Kuperberg, Lagerungen, Arrangements in the Plane, on the Sphere, and in Space, Grundlehren der mathematischen Wissenschaften 360, Springer Cham, 2023.
  34. M. Lassak, Spherical geometry -- a survey on width and thickness of convex bodies, In: Surveys in Geometry I (edited by A. Papadopoulos), Springer, Cham, 2022.

    ● K. Bezdek and Z. Lángi, Volumetric Discrete Geometry, Discrete Mathematics and Its Applications, CRC Press, Taylor & Francis Group, 2019.

  35. Z. Mustafaev, A minimax inequality for inscribed cones revisited, Canad. Math. Bull. 67 (2024), 215-221, DOI:10.4153/S000843952300067X
  36. H. Martini and Z. Mustafaev, Cross-section measures, radii, and Radon curves, Quaest. Math. 46 (2023), 1925-1936.
  37. S. Hoehner and J. Ledford, Extremal arrangements of points in the sphere for weighted cone-volume functionals, Discrete Math. 346 (2023), 113595.
  38. H. Martini, Z. Mustafaev and S.M. Zarbaliev, Some new minimax inequalities for centered convex bodies, Aequat. Math. (2024) DOI:0.1007/s00010-024-01109-6

    ● K. Bezdek and Z. Lángi, Bounds for totally separable translative packings in the plane, Discrete Comput. Geom. 63 (2020), 49-72.

  39. G. Fejes Tóth, L. Fejes Tóth and W. Kuperberg, Lagerungen, Arrangements in the Plane, on the Sphere, and in Space, Grundlehren der mathematischen Wissenschaften 360, Springer Cham, 2023.

    ● M. Ausserhofer, S. Dann, Z. Lángi and Géza Tóth, An algorithm to find maximum area polygons circumscribed about a convex polygon, Discrete Appl. Math. 255 (2019), 98-108.

  40. G. Anatriello and G. Vincenzi, Maximizing the area of polygons via quasicyclic polygons, Studia Sci. Math. Hungar. 61 (2024), 43–58.
  41. R. Molano et al., Finding the largest volume parallelepipedon of arbitrary orientation in a solid, IEEE Access 9 (2021), 103600-103609.
  42. E. Egereva, D. Surovtsev and Z. Nepovinnyy, Flat area characteristics of polygons circumscribing parabolic figures, E3S Web Conf. 164 (2020), Topical Problems of Green Architecture, Civil and Environmental Engineering 2019 (TPACEE 2019), article number 02004.
  43. S. Simić, S.D. Simić, Z. Banković, M. Ivkov-Simić, J.R. Villar and D. Simić, A Hybrid Automatic Classification Model for Skin Tumour Images, In: H. Pérez García, L. Sánchez González, M. Castejón Limas, H. Quintián Pardo and E. Corchado Rodríguez (eds), Hybrid Artificial Intelligent Systems. HAIS 2019. Lecture Notes in Computer Science, vol 11734. Springer, Cham.

    ● G. Domokos and Z. Lángi, The isoperimetric quotient of a convex body decreases monotonically under the Eikonal abrasion model, Mathematika 65 (2019), 119-129.

  44. E. Fehér, B. Havasi-Tóth and B. Ludmány, Fully spherical 3D datasets on sedimentary particles: Fast measurement and evaluation, Cent. Eur. Geol.65 (2022), 111-121, DOI:10.1556/24.2022.00124
  45. C. Richter and E.S. Gómez, On the monotonicity of the isoperimetric quotient for parallel bodies , J. Geom. Anal. 32 (2022), article number: 15.
  46. M.A. Hernández Cifre, E.S. Gómez, Isoperimetric relations for inner parallel bodies, Commun. Anal. Geom. 30 (2022), 2267-2283, DOI:10.4310/CAG.2022.v30.n10.a3, arXiv:1910.05367 (math.MG), October 11, 2019.
  47. S. Larson, Asymptotic and universal spectral estimates with applications in many-body quantum mechanics and spectral shape optimization, Ph.D. thesis, KTH Royal Institute of Technology, Stockholm, Sweden, 2019.

    ● Z. Lángi and M. Naszódi, On multiple Borsuk numbers in normed spaces, Studia Sci. Math. Hungar. 54(1) (2017), 13-26.

  48. J. Wang, F. Xue and Ch. Zong, On Boltyanski and Gohberg's partition conjecture, Bull. Lond. Math. Soc. 56 (2024) 140-149, DOI:10.1112/blms.12919
  49. C. He, H. Martini and S. Wu, Complete sets in normed linear spaces, Banach J. Math. Anal. 17, (2023), article number 45.
  50. G. Fejes Tóth, L. Fejes Tóth and W. Kuperberg, Lagerungen, Arrangements in the Plane, on the Sphere, and in Space, Grundlehren der mathematischen Wissenschaften 360, Springer Cham, 2023.

    ● Á. G.Horváth, Z. Lángi and M. Spirova, Semi-inner products and the concept of semi-polarity, Results Math. 71(1) (2017), 127-144.

  51. A.V. Proskurnikov and F. Bullo, Regular pairings for non-quadratic Lyapunov functions and contraction analysis, arXiv:2408.17350, (math.OC), Aug 30, 2024.
  52. R.C. Williamson and Z. Cranko, The geometry and calculus of losses, J. Mach. Learn. Res. 24 (2023), 1-72.
  53. T. Jahn and C. Richter, Coproximinality of linear subspaces in generalized Minkowski spaces, J. Math. Anal. Appl. 504 (2021), 125351.
  54. T. Jahn, An Invitation to Generalized Minkowski Geometry, PhD. thesis, University of Technology in Chemnitz, Germany, 2019.
  55. V. Balestro. H. Martini and R. Teixeira, Convex analysis in normed spaces and metric projections onto convex bodies, J. Convex Anal. 28(4) (2021), 1223-1248.
  56. V. Balestro. H. Martini and R. Teixeira, Duality of gauges and symplectic forms in vector spaces, Collect. Math. 72 (2021), 501–525.
  57. W.D. Richter, Statistical reasoning in dependent p-generalized elliptically contoured distributions and beyond, J. Stat. Distrib. App. 4 (2017), 21.
  58. T. Jahn, Orthogonality in generalized Minkowski spaces, J. Conv. Anal. 26 (2019), 49-76.
  59. V. Balestro, H. Martini and R. Teixeira, A new construction of Radon curves and related topics, Aequationes Math. 90 (2016), 1013-1024.

    ● J. Frittmann and Z. Lángi, Decompositions of a polygon into centrally symmetric pieces, Mediterr. J. Math. 13 (2016), 3629-3649.

  60. Gy. Kem. Nagy, Bracing zonohedra with special faces, Ybl Journal of Built Environment 3 (2015), 88-95.
  61. Gy. Kem. Nagy, Bracing rhombic structure by one-dimensional tensegrities, Meccanica 52 (2017), 1283-1293.
  62. Gy. Kem. Nagy, Repetitive skeletal structures controlled with bracing elements, Computers&Structures 226 (2020), 10613.

    ● K. Bezdek and Z. Lángi, On non-separable families of positive homothetic convex bodies, Discrete Comput. Geom. 56 (2016), 802-813.

  63. G. Fejes Tóth, L. Fejes Tóth and W. Kuperberg, Lagerungen, Arrangements in the Plane, on the Sphere, and in Space, Grundlehren der mathematischen Wissenschaften 360, Springer Cham, 2023.
  64. A. Polyanskii, A cap covering theorem, Combinatorica 41(5) (2021), 695–702.
  65. A. Akopyan, A. Balitskiy and M. Grigorev, On the Circle Covering Theorem by A. W. Goodman and R. E. Goodman, Discrete Comput. Geom. 59 (2018), 1001-1009.
  66. R. Brandenberg and B.G. Merino, Minkowski concentricity and complete simplices, J. Math. Anal. Appl. 454 (2017), 981-994.

    ● Á. G.Horváth and Z. Lángi, Maximum volume polytopes inscribed in the unit sphere, Monatsh. Math. 181 (2016), 341-354.

  67. K. Ma, R. Wu, Y. Xiao and H. Wang, Spherical dome: design, digital twin manufacturing, and testing of a glubam structure, Archit. Eng. Des. Manag. (2023), DOI: 10.1080/17452007.2023.2276287.
  68. G. Fejes Tóth, L. Fejes Tóth and W. Kuperberg, Lagerungen, Arrangements in the Plane, on the Sphere, and in Space, Grundlehren der mathematischen Wissenschaften 360, Springer Cham, 2023.
  69. D. Bilyk, D. Ferizović et al., Optimal measures for multivariate geometric potentials, accepted in Indiana Univ. Math. J.,arXiv:2303.14258, (math.CA), March 24, 2023.
  70. D. Barnhill, R. Yoshida and K. Miura, Maximum inscribed and minimum enclosing tropical balls of tropical polytopes and applications to volume estimation and uniform sampling, arXiv:2303.02539 (math.CO), March 5, 2023.
  71. S. Hoehner and J. Ledford, Extremal arrangements of points on a sphere for weighted cone-volume functionals, Discrete Math. 346 (2023), 113595
  72. I. Herburt and S. Sakata, An extremum problem for the power moment of a convex polygon contained in a disc, Adv. Geom. 21(4) (2021), 599-609.
  73. E. Simarova, Extremal random beta polytopes, J. Math. Sci. 273 (2023), 844–860, DOI:10.1007/s10958-023-06546-3
  74. J. Donahue, S. Hoehner and B. Li, The maximum surface area polytope with 5 vertices inscribed in the sphere S2, Acta Crystallogr. Sect. A 77(1) (2021), 67-74.
  75. E. Molnár, Egy számelméleti játék és tanulságai, Gradus 6(4) (2019), 69-73.

    ● G. Domokos, Z. Lángi and T. Szabó, A topological classification of convex bodies, Geom. Dedicata 182 (2016), 95-116.

  76. Q. R. Kápolnai, Restricted generation of quadrangulations and scheduling parameter sweep applications, Ph.D. thesis, Budapest Univ. of Technology, Budapest, Hungary, 2014.
  77. P.L. Várkonyi, Static equilibria and transient dynamics of rigid bodies with unilateral contacts, Doctor of the Hungarian Academy of Sciences thesis, Budapest, Hungary, 2016.
  78. A. Dumitrescu and C. D. Tóth, On the cover of the rolling stone, Proceedings of the 31st Annual ACM-SIAM Symposium on Discrete Algorithms (2020), 2575-2586.
  79. Y.N. Aliyev, Apollonius Problem and caustics of an ellipsoid, Int. Electron. J. Geom. 17(2) (2024), 402-420.

    ● G. Domokos and Z. Lángi On the average number of normals through points of a convex body, Studia Sci. Math. Hungar. 52 (2015), 457-476.

  80. S. Mondal, A short note on the Schiffer's conjecture for a class of centrally symmetric convex domains in R2, arXiv:2311.14442 [math.AP], 24 Nov 2023.
  81. H. Martini, L. Montejano and D. Oliveros, Bodies of Constant Width, Birkhäuser, Cham, 2019.

    ● K. Bezdek and Z. Lángi, Density bounds for outer parallel domains of unit ball packings, Proc. Steklov Inst. Math. 288 (2015), 209-225.

  82. S.M. Almohammad, Maximum parametric soft density of lattice configurations of balls, Acta Sci. Math. (Szeged) 87(3-4) (2021), 615-647.
  83. K.H. Rosen, D.R. Shier and W. Goddard, Discrete and Computational Geometry, IN: Handbook of Discrete and Combinatorial Mathematics, 2nd edition, Chapman and Hall/CRC, 2017.
  84. M.A. Khan, Some Problems on Graphs and Arrangements of Convex Bodies, Ph.D. thesis, University of Calgary, Calgary, Canada, 2017.
  85. M. Senechal, Crystals, periodic and aperiodic, In: Handbook of Discrete and Computational Geometry, edited by J.E. Goodman, J. O'Rourke and C.D. Tóth, CRC Press LLC, Boca Raton, FL, ISBN 9781498711395, 2018.
  86. H. Edelsbrunner and M. Iglesias-Ham, On the optimality of the FCC lattice for soft sphere packings, SIAM J. Discrete Math. 32 (2018), 750-782.
  87. M. Iglesias-Ham, Multiple covers with balls, PhD. thesis, IST Austria, Klosterneuburg, Austria, 2018.

    ● M. Hujter and Z. Lángi, On the multiple Borsuk numbers of sets, Israel J. Math. 199 (2014), 219-239.

  88. G. Lopez-Campos, D. Oliveros and J.L.R. Alfonsín, Borsuk and Vázsonyi problems through Reuleaux polyhedra, arXiv:2308.03889, (math.CO), (math.MG), 7 August 2023.
  89. J. Wang, F. Xue and Ch. Zong, On Boltyanski and Gohberg's partition conjecture, Bull. Lond. Math. Soc. 56 (2024), 140-149, DOI:10.1112/blms.12919
  90. G. Fejes Tóth, L. Fejes Tóth and W. Kuperberg, Lagerungen, Arrangements in the Plane, on the Sphere, and in Space, Grundlehren der mathematischen Wissenschaften 360, Springer Cham, 2023.
  91. H. Martini, L. Montejano and D. Oliveros, Bodies of Constant Width, Birkhäuser, Cham, 2019.
  92. M. Naszódi, Flavors of translative coverings, in: New Trends in Intuitive Geometry, Bolyai Society Mathematical Studies 27, Springer-Verlag, Berlin, Germany, 2018, 335-358.
  93. G. Kalai, Some old and new problems in combinatorial geometry I: Around Borsuk’s problem, Surveys in Combinatorics, London Mathematical Society Lecture Notes 424 (2015), 147-174.

    ● Á. G.Horváth and Z. Lángi, On the volume of the convex hull of two convex bodies, Monatsh. Math. 174 (2014), 219-229.

  94. J. Jeronimo-Castro, The volume of the convex hull of a body and its homothetic copies, Amer. Math. Monthly 122 (2015), 486-489.
  95. Z. Mustafaev, On minmax and maxmin inequalities for centered convex bodies, Math. Inequal. Appl. 25 (2022), 903–911.
  96. Z. Mustafaev, A minimax inequality for inscribed cones revisited, Canad. Math. Bull. 67 (2024), 215-221, DOI:10.4153/S000843952300067X
  97. H. Martini, Z. Mustafaev and S.M. Zarbaliev, Some new minimax inequalities for centered convex bodies, Aequat. Math. (2024) DOI:0.1007/s00010-024-01109-6

    ● G. Domokos and Z. Lángi, The robustness of equilibria on convex solids, Mathematika 60 (2014), 237-256,

  98. A.Á. Sipos, Mechanikai és természeti formák elemzése: matematikai modellek a morfológiában, Doctor of Science thesis, Hungarian Academy of Sciences, Hungary, 2022, 114 pages
  99. G. Korvin, The shape of pebbles, grains and pores, In: Statistical Rock Physics. Earth and Environmental Sciences Library. Springer, Cham, DOI:10.1007/978-3-031-46700-4_7

    ● Z. Lángi, On the perimeters of simple polygons contained in a plane convex body, Beiträge Algebra Geom. 54 (2013), 643-649.

  100. G. Fejes Tóth, L. Fejes Tóth and W. Kuperberg, Lagerungen, Arrangements in the Plane, on the Sphere, and in Space, Grundlehren der mathematischen Wissenschaften 360, Springer Cham, 2023.
  101. A. Akopyan and V. Vysotsky, On length of curves passing through boundary points of a planar convex shape, Amer. Math. Monthly 124 (2017), 588-596.

    ● Z. Lángi, M. Naszódi and I. Talata, Ball and spindle convexity with respect to a convex body, Aequationes Math. 85 (2013), 41-67.

  102. F. Fodor and N.A.M. Pinzón,Series expansions for random disc-polygons in smooth plane convex bodies, J. Appl. Prob., DOI:10.1017/jpr.2024.27
  103. F. Fodor and D.I. Papvári, A central limit theorem for random disc-polygons in smooth convex discs, Discrete Comput. Geom., DOI:10.1007/s00454-024-00701-6 (2024)
  104. I. Ivanov and C. Strachan, Vertex classification of planar C-polygons, J. Geom. 115 (2024), article number 33.
  105. K. Nagy and V. Vígh,Best and random approximations with generalized disc–polygons, Discrete Comput. Geom. (2023), DOI:1.1007/s00454-023-00554-5
  106. K. Bezdek, On a Blaschke-Santaló-type inequality for r-ball bodies, Math. Pannon. (N.S.) 29 (2023), 49–152 DOI: 10.1556/314.2023.00014
  107. C. He, H. Martini and S. Wu, Complete sets in normed linear spaces, Banach J. Math. Anal. 17, (2023), article number 45.
  108. K. Drach and K. Tatarko, Reverse isoperimetric problems under curvature constraints, arXiv:2303.02294 [math.MG], [math.DG], March 4, 2023.
  109. A. Marynych and I. Molchanov, Facial structure of strongly convex sets generated by random samples, Adv. Math. 395 (2022), 108086.
  110. K. Bezdek, On uniform contractions of balls in Minkowski spaces, Mathematika 66 (2020), 448-457.
  111. V. Bui and R. Karasev, On the Carathéodory number for strong convexity, Discrete Comput. Geom. 65 (2021), 680–692.
  112. K. Bezdek, Volumetric bounds for intersections of congruent balls in Euclidean spaces, Aequat. Math. 95 (2021), 653–665.
  113. N. Robock, From convexity to r-Convexity , Master's thesis, University of Calgary, Calgary AB, Canada, 2019.
  114. T. Jahn, An Invitation to Generalized Minkowski Geometry, PhD. thesis, University of Technology in Chemnitz, Germany, 2019.
  115. F. Fodor D.I. Papvári and V. Vígh, On random approximations by generalized disc-polygons, Mathematika 66 (2020), 498-513.
  116. H. Martini, L. Montejano and D. Oliveros, Bodies of Constant Width, Birkhäuser, Cham, 2019.
  117. K. Bezdek, On the intrinsic volumes of intersections of congruent balls, Discrete Optimization 44 (2022), 100539.
  118. L. Yuan, T. Zamfirescu and Y. Zhang, Selfishness of convex bodies and discrete point sets, European J. Combin. 80 (2019), 416-431.
  119. K. Bezdek, From r-dual sets to uniform contractions, Aequationes Math. 92 (2018), 123-134.
  120. T. Jahn, C. Richter and H. Martini, Ball convex bodies in Minkowski spaces, Pacific J. Math. 289 (2017), 287–316.
  121. F. Fodor, Á. Kurusa and V. Vígh, Inequalities for hyperconvex sets, Adv. Geom. 16 (2016), 337–348.

    ● Z. Lángi, Ellipsoid characterization theorems, Adv. Geom. 13 (2013), 145-154.

  122. J. Jeronimo-Castro, G. Ruiz-Hernandez and S. Tabachnikov, The equal tangents property, Adv. Geom. 14 (2014), 447-453.

    ● G. Domokos, Z. Lángi and T. Szabó, On the equilibria of finely discretized curves and surfaces, Monatsh. Math. 168 (2012), 321-345.

  123. E. Fehér, B. Havasi-Tóth and B. Ludmány, Fully spherical 3D datasets on sedimentary particles: Fast measurement and evaluation, Cent. Eur. Geol.65 (2022), 111-121, DOI:10.1556/24.2022.00124
  124. A. Dumitrescu and C. D. Tóth, On the cover of the rolling stone, Proceedings of the 31st Annual ACM-SIAM Symposium on Discrete Algorithms (2020), 2575-2586.
  125. Q. Ashton Acton, Issues in General and Specialized Mathematics Research, Scholarly Editions, Atlanta, Georgia, 2013.
  126. Q. R. Kápolnai, Restricted generation of quadrangulations and scheduling parameter sweep applications, Ph.D. thesis, Budapest Univ. of Technology, Budapest, Hungary, 2014.

    ● Z. Lángi, On the Hadwiger numbers of starlike disks, European J. Comb. 32 (2011), 1203-1211.

  127. G. Fejes Tóth, L. Fejes Tóth and W. Kuperberg, Lagerungen, Arrangements in the Plane, on the Sphere, and in Space, Grundlehren der mathematischen Wissenschaften 360, Springer Cham, 2023.
  128. G. Fejes Tóth, Packing and covering, In: Handbook of Discrete and Computational Geometry, edited by J.E. Goodman, J. O'Rourke and C.D. Tóth, CRC Press LLC, Boca Raton, FL, ISBN 9781498711395

    ● Z. Lángi, On the perimeters of simple polygons contained in a disk, Monatsh. Math. 162 (2011), 61-67.

  129. G. Fejes Tóth, L. Fejes Tóth and W. Kuperberg, Lagerungen, Arrangements in the Plane, on the Sphere, and in Space, Grundlehren der mathematischen Wissenschaften 360, Springer Cham, 2023.
  130. A. Dumitrescu, Metric inequalities for polygons, J. Comput. Geom. 4 (2013), 79-93.
  131. A. Glazyrin and F. Morić, Upper bounds for the perimeter of plane convex bodies, Acta Math. Hungar. 142 (2014), 366-383.
  132. R.P. Agarwal, M. Jleli and B. Samet, Some integral inequalities involving metrics, Entropy 23 (2021), 871.
  133. M. Jleli and B. Samet, On some inequalities involving generalized distance functions, Mathematics 11(5) (2023), 1157.

    ● Z. Lángi, On diagonalizable operators in Minkowski spaces with the Lipschitz property, Lin. Alg. Appl. 433 (2010), 2161-2167,

  134. Á. G.Horváth, Convexity and non-Euclidean geometries, Doctor of Science thesis, Hungarian Academy of Sciences, Hungary, 2017, 143 pages.
  135. Á. G.Horváth, Constructive curves in non-Euclidean geometries, Studies of the University of Zilina 28, (2016) 13-42.
  136. Á. G.Horváth, Isometries of Minkowski geometries, Lin. Alg. Appl. 512(1) (2017), 172-190.
  137. H. Martini and S. Wu, Classical curve theory in normed planes, Comput. Aided Geom. Design 31 (2014), 373-397.

    ● K. Dehnhardt, H. Harborth and Z. Lángi, A partial proof of the Erdős-Szekeres Conjecture for hexagons, J. Pure Appl. Math., Adv. Appl. 2(1) (2009), 69-86.

  138. F. Marić, Fast formal proof of the Erdős–Szekeres Conjecture for convex polygons with at most 6 points, J. Autom. Reasoning 62 (2019), 301-329.
  139. W. Morris and V. Soltan, The Erdős-Szekeres problem, In: Open Problems in Mathematics, edited by F.J. Nash, Jr. and Th.M. Rassias, Springer International Publishing, New York, 2016, pp. 351-375.
  140. Liping Wu and Wanbing Lu, On the minimum cardinality of a planar point set containing two disjoint convex polygons, Studia Sci. Math. Hungar. 50(3) (2013), 331-354.
  141. M. Shigeta and K. Amano, On the structure of extremal point sets for Erdős-Szekeres Problem, IEICE Trans. Fundamentals (Japanese Edition) J96-A (7) (2013), 440-451.

    ● Z. Lángi and M. Naszódi, On the Bezdek-Pach conjecture for centrally symmetric convex bodies, Canad. Math. Bull. 53(3) (2009), 407-415.

  142. G. Fejes Tóth, L. Fejes Tóth and W. Kuperberg, Lagerungen, Arrangements in the Plane, on the Sphere, and in Space, Grundlehren der mathematischen Wissenschaften 360, Springer Cham, 2023.
  143. V. Földvári, Bounds on convex bodies in pairwise intersecting Minkowski arrangement of order μ, J. Geom. 111 (2020). Article 27.
  144. K.J. Swanepoel, Combinatorial distance geometry in normed spaces , In: New Trends in Intuitive Geometry. Bolyai Society Mathematical Studies 27 , Springer-Verlag, Berlin, Germany, 2018, 407-458.
  145. A. Polyanskii, Pairwise intersecting homothets of a convex body, Electron. Notes Discrete Math. 61 (2017), 1003-1009.
  146. A. Polyanskii, Pairwise intersecting homothets of a convex body, Discrete Math. 340 (2017), 1950-1956.
  147. K. Bezdek, Classical Topics in Discrete Geometry, CMS Books in Mathematics, Springer, New York, 2010.

    ● Z. Lángi, On the Hadwiger numbers of centrally symmetric starlike disks, Beiträge Algebra Geom. 50(1) (2009), 249-257.

  148. G. Fejes Tóth, L. Fejes Tóth and W. Kuperberg, Lagerungen, Arrangements in the Plane, on the Sphere, and in Space, Grundlehren der mathematischen Wissenschaften 360, Springer Cham, 2023.
  149. G. Fejes Tóth, Packing and covering, In: Handbook of Discrete and Computational Geometry, edited by J.E. Goodman, J. O'Rourke and C.D. Tóth, CRC Press LLC, Boca Raton, FL, ISBN 9781498711395

    ● Z. Lángi, Covering a plane convex body by its negative homothets, J. Geom. 92(1-2) (2009), 91-99.

  150. A. Bikeev, Borsuk's problem, Boltyanski's illumination problem, and circumradius, Mosc. J. Comb. Number Theory 12 (2023), 223–240.

    ● K. Bezdek, Z. Lángi, M. Naszódi and P. Papez, Ball-polyhedra, Discrete Comput. Geom. 38 (2007), 201-230.

  151. G.M. Ivanov, M.S. Lopushanski and G.E. Ivanov,Shortest curves in proximally smooth sets: existence and uniqueness, Set-Valued Var. Anal. 32(4) (2024), article number 32
  152. L. Rotem, A. Schejter and B.A. Slomka, The complex Illumination problem, arXiv:2410.12021, (math.MG), 15 Oct 2024
  153. K. Nagy and V. Vígh, Random spherical disc-polygons in a spherical spindle convex disc, Studia Sci. Math. Hungar., DOI:10.1556/012.2024.04315
  154. W. R. Sun, B.-H. Vritsiou, Illuminating 1-unconditional convex bodies in R3 and R4, and certain cases in higher dimensions, arXiv:2407.11331 (math.MG) (math.CO), 16 July 2024.
  155. W. R. Sun, B.-H. Vritsiou, On the illumination of 1-symmetric convex bodies, arXiv:2407.10314 (math.MG) (math.CO), 14 July 2024.
  156. F. Fodor and N.A.M. Pinzón,Series expansions for random disc-polygons in smooth plane convex bodies, J. Appl. Prob., DOI:10.1017/jpr.2024.27
  157. B. Constandin and M. Constandin, On efficient approximation of the maximum distance to a point over an intersection of balls, arXiv:2403.02071 [cs.CG] 04 Mar 2024.
  158. J. O’Rourke and C. Vîlcu, Reshaping Convex Polyhedra, Springer Cham, 2024.
  159. J. Bracho, E.P. Pérez, L. Montejano and J.L. Ramírez-Alfonsín,The 10 antipodal pairings of strongly involutive polyhedra, arXiv:2402.13486, [math.GT], [math.CO], 21 Feb 2024.
  160. M. Angeles Alfonseca, M. Cordier , J. Jerónimo-Castro and E. Morales-Amaya, Characterization of the sphere and of bodies of revolution by means of Larman points, Adv. Geom. 24(2) (2024), 247-262.
  161. F. Fodor and D.I. Papvári, A central limit theorem for random disc-polygons in smooth convex discs, Discrete Comput. Geom., DOI:10.1007/s00454-024-00701-6 (2024)
  162. D. Galicer and J. Singer, Hadwiger's problem for bodies with enough sub-Gaussian marginals, arXiv:2310.14381 [math.MG], [math.FA], October 22, 2023.
  163. R. Hynd, The perimeter and volume of a Reuleaux polyhedron, arXiv:2310.08709 [math.MG], October 12, 2023.
  164. K. Nagy and V. Vígh,Best and random approximations with generalized disc–polygons, Discrete Comput. Geom. (2023), DOI:1.1007/s00454-023-00554-5
  165. G.M. Ivanov, M. S. Lopushanski and G.E. Ivanov, Shortest curves in proximally smooth sets: existence and uniqueness, arXiv:2308.15279, (math.FA), August 29, 2023.
  166. G. Lopez-Campos, D. Oliveros and J.L.R. Alfonsín, Borsuk and Vázsonyi problems through Reuleaux polyhedra, arXiv:2308.03889, (math.CO), (math.MG), August 7, 2023.
  167. A. Joós, Covering the Crosspolytope with Crosspolytopes, arXiv:2305.00569 [math.MG], April 30, 2023.
  168. B. Zawalski, On star-convex bodies with rotationally invariant sections, Beitr. Algebra Geom. (2023), DOI:10.1007/s13366-023-00702-1.
  169. R. Hynd, The density of Meissner polyhedra, Geom. Dedicata 218 (2024), article number 89.
  170. K. Drach and K. Tatarko, Reverse isoperimetric problems under curvature constraints, arXiv:2303.02294 [math.MG], [math.DG], March 4, 2023.
  171. I. Ivanov and C. Strachan, Vertex classification of planar C-polygons, J. Geom. 115 (2024), article number 33.
  172. Z. Kabluchko, A. Marynych and I. Molchanov, Generalised convexity with respect to families of affine maps, arXiv:2202.07887, [math.MG], [math.PR], 16 Feb 2022.
  173. T. Bisztriczky and D. Oliveros, d-Dimensional Self-dual Polytopes and Meissner Polytopes, In: Polytopes and Discrete Geometry, Contemporary Mathematics AMS 764 (2021), 21-30.
  174. C. He, H. Martini and S. Wu, Complete sets in normed linear spaces, Banach J. Math. Anal. 17, (2023), article number 45.
  175. F. Fodor, N.A.M. Pinzón and V. Vígh, On Wendel’s equality for intersections of balls, Aequat. Math. 97 (2022), 439–451.
  176. J.L. Arocha, J. Bracho and L. Montejano, Reflections of convex bodies and their sections, Beiträge Algebra Geom., DOI: 10.1007/s13366-023-00693-z
  177. F. Fodor, P. Kevei and V. Vígh, On random disc-polygons in a disc-polygon, Electron. Commun. Probab. 28 (2023), 1-11.
  178. A. Joós and A. Kővári, Convexity and mathability, Acta Polytech. Hung. 19 (2022), 63-75.
  179. F. Fodor, B. Grünfelder and V. Vígh, Variance bounds for disc-polygons, Doc. Math. 27 (2022), 1015-1029.
  180. A. Marynych and I. Molchanov, Facial structure of strongly convex sets generated by random samples, Adv. Math. 395 (2022), 108086.
  181. F. Fodor, Convex bodies and their approximations, Doctor of Academy thesis, Hungarian Academy of Sciences, Hungary, 2021.
  182. H. Huang, B.A. Slomka, T. Tkocz and B. Vritsiou, Improved bounds for Hadwiger’s covering problem via thin-shell estimates, J. European Math. Soc. 24 (2022), 1431–1448.
  183. L. Tatarko, On some problems in Random Matrix Theory and Convex Geometry, PhD thesis, University of Alberta, Edmonton AB, Canada, 2020.
  184. J. Bracho, L. Montejano, E. Pauli and J.R. Alfonsín, Strongly involutive self-dual polyhedra, Ars. Math. Contemp. 20 (2021), 143–149.
  185. V. Bui and R. Karasev, On the Carathéodory number for strong convexity, Discrete Comput. Geom. 65 (2021), 680–692.
  186. N. Robock, From convexity to r-Convexity , Master's thesis, University of Calgary, Calgary AB, Canada, 2019.
  187. T. Jahn, An Invitation to Generalized Minkowski Geometry, PhD. thesis, University of Technology in Chemnitz, Germany, 2019.
  188. F. Fodor, D.I. Papvári and V. Vígh, On random approximations by generalized disc-polygons, Mathematika 66 (2020), 498-513.
  189. L. Montejano, E. Pauli, M. Raggi, E. Roldán-Pensado, The graphs behind Reuleaux polyhedra, Discrete Comput. Geom. 64 (2020), 1013–1022.
  190. H. Martini, L. Montejano and D. Oliveros, Bodies of Constant Width, Birkhäuser, Cham, 2019.
  191. R. Chernov, K, Drach and K. Tatarko, A sausage body is a unique solution for a reverse isoperimetric problem, Adv. Math. 353 (2019), 431-445.
  192. L. Yuan, T. Zamfirescu and Y. Zhang, Selfishness of convex bodies and discrete point sets , European J. Combin. 80 (2019), 416-431.
  193. F. Fodor and V. Vígh, Variance estimates for random disc-polygons in smooth convex discs, J. Appl. Prob. 55 (2018), 1143-1157.
  194. P. Martín, H. Martini and M. Spirova, Ball hulls, ball intersections and 2-center problems for gauges, Contrib. Discrete Math. 12 (2017), 146-157
  195. M.A. Khan, Some Problems on Graphs and Arrangements of Convex Bodies, Ph.D. thesis, University of Calgary, Calgary, Canada, 2017.
  196. L. Montejano, E. Roldán-Pensado, Meissner Polyhedra, Acta Math. Hungar. 151(2) (2017), 482–494.
  197. T. Jahn, C. Richter and H. Martini, Ball convex bodies in Minkowski spaces, Pacific J. Math. 289 (2017), 287–316.
  198. G. Paouris and P. Pivovarov, Random ball-polyhedra and inequalities for intrinsic volumes, Monatsh. Math. 182(3) (2017), 709-729.
  199. G. Kalai, Some old and new problems in combinatorial geometry I: Around Borsuk’s problem, Surveys in Combinatorics, London Mathematical Society Lecture Notes 424 (2015), 147-174.
  200. F. Fodor, Á. Kurusa and V. Vígh, Inequalities for hyperconvex sets, Adv. Geom. 16 (2016), 337–348.
  201. G. Fejes Tóth and F. Fodor, Dowker-type theorems for hyperconvex discs, Period. Math. Hungar. 70 (2015), 131-144.
  202. F. Fodor, P. Kevei, and V. Vígh, On random disc-polygons in smooth convex discs, Adv. Appl. Probab. 46 (2014), 899-918.
  203. F. Fodor and V. Vígh, Disk-polygonal approximations of planar spindle convex sets, Acta Sci. Math. (Szeged) 78 (2012), 331-350.
  204. M. Spirova, Discrete Geometry in Normed Spaces, habilitation thesis, University of Technology in Chemnitz, Chemnitz, Germany, 2010.
  205. M. Spirova, On a theorem of G. D. Chakerian, Contrib. Discrete Math. 5(1) (2010), 107-118.
  206. P. K. Agarwal, R. Ben-Avraham and M. Sharir, The 2-center problem in three dimensions, Proceedings of the 2010 annual symposium on Computational geometry, ACM, New York, 2010, pp. 87-96.
  207. Y. S. Kupitz, H. Martini and M. A. Perles, Ball polytopes and the Vazsonyi Problem, Acta Math. Hungar. 126(1-2) (2010), 99-163.
  208. H. Martini and M. Spirova, On the circular hull property in normed planes, Acta Math. Hungar. 125(3) (2009), 275-285.
  209. M. Bezdek, On a generalization of the Blaschke-Lebesgue theorem for disk-polygons, Contrib. Discrete Math. 6(1) (2011), 77-85.
  210. H. Maehara and N. Tokushige, From line-systems to sphere-systems - Schläfli's double six, Lie's line-sphere transformation, and Grace's theorem, European J. Combin. 30 (2009), 1337-1351.

    ● A. Joós and Z. Lángi, On the relative distances of seven points in a plane convex body, J. Geom. 87 (2007), 83-95.

  211. Zhanjun Su, Sipeng Li, Jian Shen and Liping Yuan, On the relative distances of nine or ten points in the boundary of a plane convex body, Discrete Appl. Math. 160 (2012), 303-305.
  212. Zhenhua Wu and Yu Hen Hu, How many wireless resources are needed to resolve the hidden terminal problem, Computer Networks 57 (2013), 3987-3996.
  213. Zhanjun Su, Xianglin Wei, Sipeng Li and Jian Shen, On the relative distances of eleven points in the boundary of a plane convex body, Discrete Math. 317 (2014), 14-18.
  214. Xiao-ling Li, Su-mei Zhang, Geng-sheng Zhang, Jian Shen, The locus of points with equal sum of relative distances to three points, J. Math. 36 (2016), 759-766.
  215. C. Liu and Z. Su, On the relative distances of nine points in the boundary of a plane convex body, Results Math. 76 (2021), Article number: 82.

    ● B. Csikós, Z. Lángi and M. Naszódi, A generalization of the Discrete Isoperimetric Inequality for piecewise smooth curves of constant geodesic curvature, Period. Math. Hungar. 53(1-2) (2006), 121-131.

  216. G. Fejes Tóth, L. Fejes Tóth and W. Kuperberg, Lagerungen, Arrangements in the Plane, on the Sphere, and in Space, Grundlehren der mathematischen Wissenschaften 360, Springer Cham, 2023.
  217. B. Sanki and A. Vadnere, Isoperimetric inequality for disconnected regions, Geom. Dedicata 219 (2025), 1
  218. F. Fodor, Á. Kurusa and V. Vígh, Inequalities for hyperconvex sets, Adv. Geom. 16 (2016), 337–348.
  219. K. Bezdek and S. Reid, Contact graphs of unit sphere packings, J. Geom. 103 (2013), 57-83.

    ● K. Böröczky and Z. Lángi, On the relative distances of six points in a plane convex body, Stud. Sci. Math. Hungar. 42(3) (2005), 253-264.

  220. P. Brass, W. Moser and J. Pach, Research Problems in Discrete Geometry, Springer, New York, 2005.
  221. K. Böröczky, Jr., Finite Packing and Covering, Cambridge Tracts in Mathematics 154, Cambridge University Press, Cambridge, 2004.
  222. Zhanjun Su, Sipeng Li, Jian Shen and Liping Yuan, On the relative distances of nine or ten points in the boundary of a plane convex body, Discrete Appl. Math. 160 (2012), 303-305.
  223. A. Joós, Pontok pakolása konvex alakzatokba, Ph.D. thesis, Eötvös University, Budapest, Hungary, 2007.
  224. Zhanjun Su, Xianglin Wei, Sipeng Li and Jian Shen, On the relative distances of eleven points in the boundary of a plane convex body, Discrete Math. 317 (2014), 14-18.
  225. Xiao-ling Li, Su-mei Zhang, Geng-sheng Zhang, Jian Shen, The locus of points with equal sum of relative distances to three points, J. Math. 36 (2016), 759-766.
  226. C. Liu and Z. Su, On the relative distances of nine points in the boundary of a plane convex body, Results Math. 76 (2021), Article number: 82.

    ● Z. Lángi, On seven points in the boundary of a plane convex body in large relative distances, Beiträge Algebra Geom. 45(1) (2004), 275-281.

  227. E. M. Bronshteǐn, Approximation of convex sets by polyhedra (Russian), Sovrem Mat. Fundam. Napravl. 22(2007), 5-37, translation in J. Math. Sci. 153(2008), 727-762.
  228. M. Lassak, Packing an n-dimensional convex body by n+1 homothetical copies, Revue Roumaine de Mathematiques Pures et Appliquees, 51 (2006), 43-47.
  229. M. Lassak, Packing a planar convex body with three homothetical copies and inscribing relatively equilateral triangles, Adv. Geom. 5 (2005), 325-332.
  230. P. Brass, W. Moser and J. Pach, Research Problems in Discrete Geometry, Springer, New York, 2005.
  231. M. Lassak, On relatively equilateral polygons inscribed in a convex body, Publ. Math. Debrecen 65 (2004), 133-148.

    ● Z. Lángi, Relative distance of points of a convex body, Ph.D. thesis, Eötvös University, Budapest, Hungary, 2003.

  232. C. Liu and Z. Su, On the relative distances of nine points in the boundary of a plane convex body, Results Math. 76 (2021), Article number: 82.
  233. Zhanjun Su, Xianglin Wei, Sipeng Li and Jian Shen, On the relative distances of eleven points in the boundary of a plane convex body, Discrete Math. 317 (2014), 14-18.
  234. Zhanjun Su, Sipeng Li, Jian Shen and Liping Yuan, On the relative distances of nine or ten points in the boundary of a plane convex body, Discrete Appl. Math. 160 (2012), 303-305.
  235. Wenhua Lan and Zhanjun Su, On a conjecture about nine points in the boundary of a plane convex body at pairwise relative distances not greater than 4sin(π/18), J. Geom. 96 (2009), 119-123.

    ● Z. Lángi and M. Lassak, Relative distance and packing a body by homothetical copies, Geombinatorics 13 (2003), 29-40.

  236. P. Brass, W. Moser and J. Pach, Research Problems in Discrete Geometry, Springer, New York, 2005.
  237. H. Martini, L. Montejano and D. Oliveros, Bodies of Constant Width, Birkhäuser, Cham, 2019.
  238. C. Liu and Z. Su, On the relative distances of nine points in the boundary of a plane convex body, Results Math. 76 (2021), Article number: 82.

    ● Z. Lángi, On the relative lengths of sides of convex polygons, Stud. Sci. Math. Hungar. 40 (2003), 115-120.

  239. Wenhua Lan and Zhanjun Su, On a conjecture about nine points in the boundary of a plane convex body at pairwise relative distances not greater than 4sin(π/18), J. Geom. 96(2009), 119-123.
  240. Zhanjun Su and Ren Ding, On the relative lengths of the sides of convex polygons, Adv. Geom. 8(2008), 107-110.
  241. Xianglin Wei and Ren Ding, On relatively short sides of convex hexagons, Ars Combin. 85(2007), 155-160.
  242. K. Böröczky, Jr., Finite Packing and Covering, Cambridge Tracts in Mathematics 154, Cambridge University Press, Cambridge, 2004.
  243. Zhanjun Su, Sipeng Li, Jian Shen and Liping Yuan, On the relative distances of nine or ten points in the boundary of a plane convex body, Discrete Appl. Math. 160 (2012), 303-305.
  244. Zhanjun Su, Xianglin Wei, Sipeng Li and Jian Shen, On the relative distances of eleven points in the boundary of a plane convex body, Discrete Math. 317 (2014), 14-18.
  245. C. Liu and Z. Su, On the relative distances of nine points in the boundary of a plane convex body, Results Math. 76 (2021), Article number: 82.

    ● Z. Lángi and M. Lassak, On four points of a convex body in large relative distances, Geombinatorics XII(4) (2003), 184-190.

  246. Wenhua Lan and Zhanjun Su, On a conjecture about nine points in the boundary of a plane convex body at pairwise relative distances not greater than 4sin(π/18), J. Geom. 96 (2009), 119-123.
  247. Zhanjun Su, Sipeng Li, Jian Shen and Liping Yuan, On the relative distances of nine or ten points in the boundary of a plane convex body, Discrete Appl. Math. 160 (2012), 303-305.
  248. Zhanjun Su, Xianglin Wei, Sipeng Li and Jian Shen, On the relative distances of eleven points in the boundary of a plane convex body, Discrete Math. 317 (2014), 14-18.
  249. Xiao-ling Li, Su-mei Zhang, Geng-sheng Zhang, Jian Shen, The locus of points with equal sum of relative distances to three points, J. Math. 36 (2016), 759-766.
  250. C. Liu and Z. Su, On the relative distances of nine points in the boundary of a plane convex body, Results Math. 76 (2021), Article number: 82.

    ● K. Bezdek and Z. Lángi, On almost equidistant points on Sd-1, Period. Math. Hungar. 39(1-3) (1999), 139-144.

  251. O. Ahmadi and A. Mohammadian, Sets with many orthogonal vectors over finite fields, Finite Fields Appl. 37 (2016), 179-192.
  252. M. Balko, A. Pór, M. Scheucher, K. Swanepoel and P. Valtr, Almost equidistant sets, Graphs and Combinatorics 36 (2020), 729-754.
  253. A. Polyanskii, On almost-equidistant sets, Lin. Alg. Appl. 563 (2019), 220-230.
  254. A. Kupavskii, N.H. Mustafa and K.J. Swanepoel, Bounding the size of an almost-equidistant set in Euclidean space, Combinatorics, Probability and Computing 28 (2019), 280-286.
  255. A. Polyanskii, On almost-equidistant sets - II, Electron. J. Combin. 26 (2019), P2.14.



Last refreshed on November 8, 2021
Curriculum vitae
Publications
Presentations
Citations
Teaching/Tanítás
Contact Information
Elérhet?ség
Links/Linkek