Tools of Modern Probability -- fall semester 2022


Subject code: BMETE95AM33

Classes:
Lecturer: Imre Péter Tóth

RESULTS
All results of the semester can be seen in this table. The list is anonymous, the names are substituted by a unique identifier called "ID". Each students can find her/his "ID" and also the corrected exams (and some homeworks) in Moodle. (Sorry for this inconvenience. The gradebook of Moodle is not well suited for such calculations.) I hope that all homework results are administered. If something is missing or you find errors, please let me know!


QUESTION/ANSWER SESSION
before the third exam: ONLINE on MS Teams (sorry for that), at 18:00 on 23 January 2023 (Monday). To join, follow this link. We can also have another session at 16:00 on 24 January 2023 (Tuesday), BUT ONLY IF SOMEONE REQUESTS it by email or by phone.
If there is any problem (which is likely), you can call me on +36-20-5372256.
If neither of these times is good for you, but you would like to ask, call me at any time and we schedule a meeting.

EXAMS
This was the first exam and here are the solutions.
This was the second exam and here are the solutions.
This was the third exam and here are the solutions.
All corrected exams can be found in Moodle.
EXAM ORGANIZATION
Because most university buildings are closed for the winter, the exams will be WRITTEN. Expect questions similar to the practice exercises and the arguments presented in class. A sample exam exercise sheet is here.

EXAM MATERIAL
This semester I was even slower than usual: a considerable part of the planned topics was not covered - sorry.
In particular, please IGNORE sections 7, 8 and 9 of the practice exercise sheet. The exam will be based on sections 1, 2, 3, 4, 5, 6 and 10.

HOMEWORK assignments: Paractice exercises Here.

Course organization:
Grading rules:
HOMEWORK SUBMISSION: Home works can be submitted either on paper, or electronically via the Moodle system in pdf. If you submit online, please make sure that the file you upload is a single pdf, well readable and of moderate size. (The limit is 10 MB, but 1 MB is enough for everything.)

Planned topics: for sure, not all of these will be covered. Videos of lectures from 2020 that were live:
These videos are not cut at the natural boundaries of the material presented, but at the brakes of the classes where they were recorded. So their descriptions only describe the content roughly.
Lecture 1, part 1: Gaussian integrals (46:21, 357 MB)
Lecture 1, part 2: Spherically symmetric integrals (32:57, 263 MB)
Lecture 2, part 1: Surface of hyperspheres (45:19, 301 MB)
Lecture 2, part 2: Euler Gamma function (32:41, 134 MB)
Lecture 3, part 1: Notation for asymptotic behaviour of functions SORRY, no video: I used the wrong settings, and the quality is unacceptable.
Lecture 3, part 2: Almost Gaussian integrals 1 (49:15, 226 MB)
Lecture 4, part 1: Almost Gaussian integrals 2 (35:14, 134 MB)
Lecture 4, part 2: liminf/limsup and Almost Gaussian integrals 3 (45:14, 200 MB)
Question session (no official class on sports day): Integration of spherically symmetric functions repeated (1:02:00, 323 MB)
Lecture 5, part 1: Examples of almost Gaussian integrals (52:40, 368 MB)
Lecture 5, part 2: Normalizing almost Gaussian functions to Gaussian; Stirling's approximation (27:18, 164 MB)
Lecture 6, part 1: Beta function (36:40, 138 MB)
Lecture 6, part 2: Gamma and beta distributions in Statistical Physics (43:34, 164 MB)
Lecture 7, part 1: Measure theory basics 1 (44:00, 145 MB)
Lecture 7, part 2: Measure theory basics 2 (36:36, 117 MB)
Lecture 8, part 1: Sorry, no video - I managed to record the break instead.
Lecture 8, part 2: Distributions of random variables (33:33, 92 MB)
Lecture 9, part 1: Remarks on homework solutions (20:44, 62 MB)
Lecture 9, part 2: The notion of Lebesgue integral (1:00:40, 201 MB)
Lecture 10, part 1: Expectation of random variables (46:05, 166 MB)
Lecture 10, part 2: Density of measures and calculating integrals (32:59, 114 MB)
Lecture 11, part 1: Integral substitution theorem, expectation of distributions (43:17, 145 MB)
Lecture 11, part 2: Properties of the integral and expectation, with examples (38:26, 125 MB)
Lecture 12, part 1: Description and construction of random variables (51:37, 147 MB)
Lecture 12, part 2: Generalized inverse of distribution funcitons, remark about the Zikkurat method (31:35, 81 MB)
Lecture 13, part 1: Types of convergence of functions and random variables (42:58, 135 MB)
Lecture 13, part 2: Convergence of functions vs convergence of integrals (36:09, 107 MB)
Lecture 14, part 1: Exchanging limit and integral: Monotone concvergence thm, Dominated convergence thm, Fatou's lemma (53:29, 153 MB)
Lecture 14, part 2: Example of dominated convergence: continuity and differentiability of characteristic functions (31:29, 85 MB)
Lecture 15, part 1: Differentiability of the characteristic function continued (38:39, 130 MB)
Lecture 15, part 1: Exchanging integrals: Fubini's theorem (34:49, 119 MB)
Lecture 16, part 1: Weak convergence of random variables, distributions and distribution functions (41:06, 158 MB)
Lecture 16, part 2: Equivalence of notions of weak convergence; relation to strong convergence (35:00, 128 MB)
Lecture 17, part 1: Weak convergence on metric spaces, Skorokhod representation theorem (33:28, 113 MB)
Lecture 17, part 2: Subsequential limits for distribution functions, vague limits, tightness (52:20, 180 MB)
Lecture 18, part 1: Weak convergence and tightness (27:34, 108 MB)
Lecture 18, part 2: Why we like limit theorems, weak convergence and characteristic functions (38:24, 152 MB)

Material that was pre-recorded (not live): Suggested literature