1. Morvai G., Weiss B., Intermittent Estimation for Finite Alphabet Finitarily Markovian Processes with Exponential Tails. To appear in Kybernetika, Vol. 57, no. 4, 2021.
  2. Morvai G., Weiss B., Consistency, integrability and asymptotic normality for some intermittent estimators. ALEA, Lat. Am. J. Probab. Math. Stat. Vol. 18, pp. 1643–1667, 2021. .pdf;
  3. Morvai G., Weiss B., On universal algorithms for classifying and predicting stationary processes. Probability Surveys, Vol. 18, pp. 77-131, 2021. .pdf; .pdf;
  4. Morvai G., Weiss B., Universal rates for estimating the residual waiting time in an intermittent way. Kybernetika, Volume: 56 no. 4, pp. 601-616, 2020. .pdf; .pdf;
  5. Morvai G., Weiss B., Estimating the conditional expectations for continuous time stationary processes. Kybernetika, Volume: 56 no. 3, pp. 410-431, 2020. .pdf; .pdf;
  6. Morvai G., Weiss B., A note on discriminating Poisson processes from other point processes with stationary inter arrival times. Kybernetika, Volume: 55 no. 5, pp. 802-808, 2019. .pdf; .pdf;
  7. Morvai G., Weiss B., A Versatile Scheme for Predicting Renewal Times. Kybernetika, Volume: 52 no. 3, pp. 348-358, 2016. .pdf; .pdf;
  8. Morvai G., Weiss B., Inferring the Residual Waiting Time for Binary Stationary Time Series . Kybernetika, Volume:50 no. 6, pp. 869-882, 2014. .pdf; .pdf;
  9. Morvai G., Weiss B., Universal Tests for Memory Words. IEEE Transactions on Information Theory, Volume:59 , Issue: 10, pp. 6873 - 6879, 2013. .pdf; ; .pdf; ; ;
  10. Morvai G., Weiss B., A note on prediction for discrete time series. Kybernetika, Volume 48, no. 4, pp. 809-823, 2012. .pdf; .pdf;
  11. Morvai G., Weiss B., Testing stationary processes for independence. Ann. Inst. H. Poincaré Probab. Statist., Volume 47, Number 4 , pp. 1219-1225, 2011. .pdf; .pdf;
  12. Morvai G., Weiss B., Nonparametric Sequential Prediction for Stationary Processes. The Annals of Probability, Vol. 39, No. 3, 1137--1160, 2011. .pdf; .pdf;
  13. Molnár-Sáska G., Morvai G., Intermittent Estimation for Gaussian Processes. IEEE Transactions on Information Theory, Vol. 56. No. 6, June, pp. 2778--2782, 2010. .pdf; .pdf;
  14. Morvai G., Weiss B., Estimating the residual waiting time for binary stationary time series. ITW 2009. IEEE Information Theory Workshop on Networking and Information Theory, 10-12 June 2009 pp. 67 - 70, 2009. .pdf; .pdf;
  15. Morvai G., Weiss B., On Universal Estimates for Binary Renewal Processes. Annals of Applied Probability, 18 , no. 5, pp. 1970--1992, 2008. .pdf; .pdf;
  16. Morvai G., Weiss B., Estimating the Lengths of Memory Words. IEEE Transactions on Information Theory, Vol. 54, No. 8, pp. 3804-3807, 2008. .pdf; .pdf; .pdf;
  17. Morvai G., Weiss B., On sequential estimation and prediction for discrete time series. Stochastics and Dynamics, Vol. 7, No. 4, pp. 417-437, 2007. .pdf; .pdf; .pdf;
  18. Morvai G., Weiss B., On estimating the memory of finitarily Markovian processes. Ann. Inst. H. Poincaré Probab. Statist., Vol. 43 pp. 15-30, 2007. .pdf; .pdf; .pdf;
  19. Morvai G., Weiss B., Limitations on intermittent forecasting. Statistics & Probability Letters, Vol. 72, pp. 285-290, 2005. .pdf; .pdf; .pdf;
  20. Morvai G., Weiss,B., Order estimation of Markov chains. IEEE Transactions on Information Theory, Vol. 51, No. 4, pp. 1496-1497, 2005. .pdf; .pdf; .pdf;
  21. Morvai G., Weiss B., Forward estimation for ergodic time series. Ann. Inst. H. Poincaré Probab. Statist. Vol. 41 pp. 859-870, 2005. .pdf; .pdf; .pdf;
  22. Morvai G., Weiss B., Prediction for discrete time series. Probability Theory and Related Fields, Vol. 132, pp.1-12, 2005. .pdf; .pdf; .pdf;
  23. Morvai G., Weiss B., On classifying processes. Bernoulli, Vol. 11, No. 3, pp. 523-532, 2005. .pdf; .pdf; .pdf;
  24. Morvai G., Weiss B., Inferring the conditional mean. Theory of Stochastic Processes, Vol. 11 (27), no. 1-2, pp. 112-120, 2005. .pdf; .pdf;
  25. Morvai G., Weiss B., Intermittent estimation of stationary time series. Test, Vol. 13. No. 2, pp. 525-542, 2004. .pdf; .pdf;
  26. Morvai G., Weiss B., Forecasting for stationary binary time series. Acta Applicandae Mathematicae, Vol. 79, No. 1, pp. 25-34, 2003. .pdf; .pdf;
  27. Morvai G., Guessing the output of a stationary binary time series. In: Foundations of Statistical Inference, Y. Haitovsky, H.R. Lerche, Y. Ritov (Eds.), pp. 207-215, Physica-Verlag, 2003. .pdf; .pdf;
  28. Györfi L., Morvai G., Queueing for ergodic arrivals and services. In: Limit Theorems in Probability and Statistics, I. Berkes E. Csáki, M. Csörgõ (Eds.), pp. 127-141, J. Bolyai Mathematical Society, 2002. .pdf; .pdf;
  29. Györfi L., Lugosi G., Morvai G., A simple randomized algorithm for sequantial prediction of ergodic time series. IEEE Transactions on Information Theory Vol. 45, pp. 2642-2650, 1999. .pdf; .pdf;
  30. Morvai G., Kulkarni S., Nobel A., Regression estimation from an individual stable sequence. Statistics Vol. 33, pp. 99-118, 1999. .pdf; .pdf;
  31. Yakowitz S., Györfi L., Kieffer J., Morvai G., Strongly-consistent nonparametric forecasting and regression for stationary ergodic sequences. Journal of Multivariate Analysis Vol. 71, pp. 24-41, 1999. .pdf; .pdf;
  32. Nobel A., Morvai G., Kulkarni S., Density estimation from an individual numerical sequence. IEEE Transactions on Information Theory Vol. 44, pp. 537-541, 1998. .pdf; .pdf;
  33. Györfi L., Morvai G., Yakowitz S., Limits to consistent on-line forecasting for ergodic time series. IEEE Transactions on Information Theory Vol. 44, pp. 886-892, 1998. .pdf; .pdf;
  34. Morvai G., Yakowitz S., Algoet P., Weakly convergent nonparametric forecasting of stationary time series. IEEE Transactions on Information Theory Vol. 43, pp. 483-498, 1997. .pdf; .pdf;
  35. Morvai G., Yakowitz S., Györfi L., Nonparametric inference for ergodic, stationary time series. The Annals of Statistics Vol. 24, pp. 370-379, 1996. .pdf; .pdf;
  36. Morvai G., Vajda I., A Survay on Log-Optimum Portfolio Selection. In: Second European Congress on Systems Science. Afcet, Paris 1993, pp. 936-944. .pdf;
  37. Morvai G., Portfolio choice based on the empirical distriburion. Kybernetika, Vol. 28, pp. 484-493, 1992. .pdf;
  38. Morvai G., Empirical log-optimal portfolio selection. Problems of Control and Information Theory, Vol. 20, pp. 453-463, 1991. .pdf;