List of publications

[24] G. Etesi: Exotica and the status of the strong cosmic censor conjecture in four dimensions, to appear in Class. Quant. Grav., arXiv: 1707.09180 [gr-qc];

[23] G. Etesi: Gravity as a four dimensional algebraic quantum field theory, Adv. Theor. Math. Phys. 20, 1049-1082 (2016), arXiv: 1402.5658 [hep-th] ;

[22] G. Etesi: Exotica or the failure of the strong cosmic censorship in four dimensions, Int. Journ. Geom. Methods Mod. Phys. 12, 1550121-1-1550121-14 (2015), arXiv: 1503.04945 [gr-qc];

[21] G. Etesi: Complex structure on the six dimensional sphere from a spontaneous symmetry breaking, Journ. Math. Phys. 56, 043508-1-043508-21 (2015), Erratum: Journ. Math. Phys. 56, 099901-1 (2015), arXiv: math.DG/0505634;

[20] G. Etesi: On the energy spectrum of Yang--Mills instantons over asymptotically locally flat spaces, Comm. Math. Phys. 322, 1-17 (2013), arXiv: 1103.0241 [math.DG] ;

[19] G. Etesi: A proof of the Geroch--Horowitz--Penrose formulation of the strong cosmic censor conjecture motivated by computability theory, Int. Journ. Theor. Phys. 52, 946-960 (2013), arXiv: 1205.4550v3 [gr-qc];

[18] G. Etesi, Á. Nagy: S-duality in Abelian gauge theory revisited, Journ. Geom. Phys. 61, 693-707 (2011), arXiv: 1005.5639 [math.DG];

[17] G. Etesi, Sz. Szabó: Harmonic functions and instanton moduli spaces on the multi-Taub--NUT space, Comm. Math. Phys. 301, 175-214 (2011), arXiv: 0809.0480 [math.DG];

[16] G. Etesi, M. Jardim: Moduli spaces of self-dual connections over asymptotically locally flat gravitational instantons, Comm. Math. Phys. 280, 285-313 (2008), Erratum: Comm. Math. Phys. 288, 799-800 (2009), arXiv: math.DG/0608597;

[15] G. Etesi: Gravitational interpretation of the Hitchin equations, Journ. Geom. Phys. 57, 1778-1788 (2007), arXiv: math.DG/0605590 v2;

[14] G. Etesi: Homotopic classification of Yang--Mills vacua taking into account causality, Int. Journ. Theor. Phys. 46, 832-847 (2007), arXiv: hep-th/0011157 v3;

[13] G. Etesi: The topology of asymptotically locally flat gravitational instantons, Phys. Lett. B641, 461-465 (2006), arXiv: hep-th/0602053 v3;

[12] G. Etesi: Classification of 't Hooft instantons over multi-centered gravitational instantons, Nucl. Phys. B662, 511-530 (2003), arXiv: hep-th/0303146;

[11] G. Etesi, T. Hausel: On Yang--Mills instantons over multi-centered gravitational instantons, Comm. Math. Phys.235, 275-288 (2003), arXiv: hep-th/0207196;

[10] G. Etesi: Note on a reformulation of the strong cosmic censor conjecture based on computability, Phys. Lett. B550, 1-7 (2002), arXiv: gr-qc/0207086;

[9] G. Etesi: A rigidity theorem for non-vacuum initial data, Journ. Math. Phys. 43, 554-562 (2002), arXiv: gr-qc/0101006 v3;

[8] G. Etesi, I. Németi: Non-Turing computations via Malament--Hogarth space-times, Int. Journ. Theor. Phys. 41, 341-370 (2002), arXiv: gr-qc/0104023 v2;

[7] G. Etesi: Spin(7)-manifolds and symmetric Yang--Mills instantons, Phys. Lett. B521, 391-399 (2001), arXiv: hep-th/0110159 v2;

[6] G. Etesi: The structure of the Yang--Mills vacuum seen by distant observers, in: Consistent equation of classical gravitation to quantum limit and beyond (Frontiers of fundations of Physics 4 Conference, 9-13 Dec. 2000, Hyderabad, India), ed.: Sidharth, B.G., Altaisky, M.V., Kluwer Academic/Plenum Press Publishers, New York (2001);

[5] G. Etesi, T. Hausel: Geometric construction of new Yang--Mills instantons over Taub--NUT space, Phys. Lett. B514, 189-199 (2001), arXiv: hep-th/0105118 v2;

[4] G. Etesi, T. Hausel: Geometric interpretation of Schwarzschild instantons, Journ. Geom. Phys. 37, 126-136 (2001), arXiv: hep-th/0003239;

[3] G. Etesi: A global uniqueness theorem for stationary black holes, Comm. Math. Phys. 195, 691-697 (1998), arXiv: hep-th/9705206;

[2] Etesi G.: A klasszikus mezőelméletek geometriája; és A kvantummező-elméletek szerkezete (in Hungarian), in: Fizika és geometria (fizikus-matematikus nyári iskola, Óbánya, 1997), MAFIHE kiadvány (2003);

[1] G. Etesi: Spontaneous symmetry breaking in the SO(3) gauge theory to discrete subgroups, Journ. Math. Phys. 37, 1596-1602 (1996), arXiv: hep-th/9706029.


Back to my homepage.