Let us consider scalar delay differential equations of the form x'(t)=-ax(t)+f(x(t-1)), where a>0 and f is a nondecreasing C1-function. This talks gives an overview of the periodic orbits and the global attractor.
After showing some well-known results of Tibor Krisztin, Hans-Otto Walther and Jianhong Wu, I introduce the notion of large-amplitude periodic (LAP) orbits. First we discuss the bifurcation and the existence of a pair of LAP orbits. Then we describe the geometric properties of the unstable set of a specific LAP orbit in detail. Complicated configurations of LAP orbits appear when the dynamical system has several unstable equilibria – we also consider this case. These are joint works with Tibor Krisztin and Szandra Beretka.
No preliminary knowledge of delay equations is presumed.