We present the existence of resonance and beats in open and forced chemical oscillatory systems using a superimposed sinusoidal modulation on the inflow rates of the reagents. We demonstrate control over the periodicity of the forced oscillations and show that the time period of beats follows the relation known for forced physical oscillators. Based on experimental results and numerical model simulations, we could show that resonance and beats are internal properties of chemical oscillatory systems. A forced open chemical oscillatory system is a counterpart of the forced oscillators known form the classical mechanics (e.g., driven pendulum), in which instead of applying a periodic external driving force, the periodically changing chemical potential drives the open oscillatory systems.
(joint work with Hugh Shearer Lawson, Gábor Holló, Róbert Horváth)