List of publications
Miklós
Horváth
[1] M.
Horváth and
A. Sövegjártó, On convex functions, Annales
Univ.
Sci.Budapest.,
Sectio Math. 29(1986),193-198.
[2] M. Horváth and N. H. Loi, A remark on signum
type orthonormal systems, Annales
Univ. Sci. Budapest., Sectio Math. 28(1986), 195-198.
[3] M. Horváth, Total variation in L_p-sense,
Annales Univ. Sci. Budapest., Sectio
Math.
29(1986), 199-202.
[4] A. Bogmér, M. Horváth and I. Joó,
On the control of strings, Coll. Math. Soc.
J.
Bolyai 49, Alfred Haar Memorial Conference,
Budapest 1958. , North-
Holland, Amsterdam 1986, 199-211.
[5] S. A. Avdonin, I. Joó and
M. Horváth, Riesz bases from elements of the form ...
(in Russian), Vestnik Leningradskogo Univ. Ser. 1.
vip. 4. (22) (1989), 3-7.
[6] M. Horváth, On the Muckenhoupt condition,
Periodica Math. Hung. 18(1987), 53-58.
[7] M. Horváth, On multidimensional universal
functions, Studia Sci. Math. 21(1986), 549-
552.
[8] A. Bogmér, M. Horváth and I. Joó,
Minimax theorems and convexity, Preprint of
the
Math. Inst. of the Hung. Acad. Sci. No. 37/1985.;
Minimax tételek és konvexitás (in Hungarian) Mat. Lapok 34(1-3)(1987), 149-170.
[9] M. Horváth, Answer to a
problem of I. Joó, Studia Sci. Math. 23(1988), 245-250.
[10] M. Horváth, Vibrating strings with
free ends, Acta Math. Hung. 51(1988), 171-180.
[11] M. Horváth, I. Joó and V. Komornik,
An equiconvergence theorem, Annales Univ.
Sci. Budapest., Sectio Math. 31(1988), 19-26.
[12] M. Horváth, Notes on a
convexity, Annales Univ. Sci. Budapest., Sectio Math. 30
(1987), 259-264.
[13] M. Horváth, On additive functions,
Annales Univ. Sci. Budapest., Sectio Math. 31
(1988), 87-93.
[14] M. Horváth, On eigenfunction expansions, Annales
Univ. Sci. Budapest., Sectio Math.
32(1989), 159-190.
[15] Horváth M. and Joó I., On the Ky
Fan-convexity (in Hungarian), Mat. Lapok
34(1-3)(1987), 137-140.
[16] M. Horváth, Infinite string
with discrete spectrum, Periodica Math. Hung. 20(1989),
261-278.
[17] A. Bogmér, M. Horváth and I. Joó, Note to some
papers of V. Komornik on
vibrating
membranes , Periodica Math. Hung. 20(1989), 193-205.
[18] M. Horváth, I. Joó and I.
Szalkai, Proving theorems in analysis using
mathematical
logical methods, Third conference of program designers
(July 1-3, 1987), ed.
by A. Iványi,
Budapest, 1987. 145-149.
[19] Horváth M., Joó I. és Szalkai I., A
Banach-elvről, Mat. Lapok 34(4)(1991), 253-300.
[20] M. Horváth and I. Joó, On Riesz bases II.,
Annales Univ. Sci. Budapest., Sectio Math.
33(1990), 261-271.
[21] M. Horváth, The vibration
of a membrane in different points,
Annales Univ.
Sci.
Budapest. , Sectio Math. 33(1990),31-38.
[22] M. Horváth, Some saturation theorems
for classical orthogonal expansions I. , Peri-
odica Math. Hung. 22(1)(1991),27-60.
[23] M. Horváth, Some saturation
theorems for classical orthogonal expansions II., Acta
Math. Hung. 58(1-2)(1991), 157-191.
[24] M. Horváth, I. Joó and A. Sövegjártó , On
Sturm-Liouville difference equations, An-
nales Univ. Sci. Budapest., Sectio Comp. 10(1990), 135-165.
[25] A. Bogmér, M. Horváth and A. Sövegjártó, On
some problems of I. Joó, Acta Math.
Hung. 58(1-2)(1991), 153-155.
[26] M. Horváth, I. Joó and Z. Szentmiklóssy, A
problem in game theory, Studia Sci. Math.
Hung. 27(1992), 385-389.
[27] P. Erdős, M. Horváth and I. Joó, On the uniqueness of the expansions ...
Acta Math. Hung. 58(3-4)(1991), 333-342.
[28] M. Horváth, Local uniform convergence of the
eigenfunction expansion associated with
the Laplace operator I, Acta Math. Hung. 64(1994), 1-25.
[29] M. Horváth, Local uniform convergence of the
eigenfunction expansion associated with
the Laplace operator II, Acta Math. Hung. 64(2)(1994), 101-138.
[30] M. Horváth, Exact
norm estimates for
the singular Schrödinger operator, Acta
Math.
Hung.60(1-2)(1992), 177-195.
[31] M. Horváth, Uniform estimations of
the Green function for the singular
Schrödinger
operator, Acta Math. Hung. 61(3-4)(1993), 327-342.
[32] M. Horváth, Sur le
développement spectral de l`opérateur de Schrödinger, Comptes
Rendus Acad. Sci. Paris, Série I. 311(1990), 499-502.
[33] M. Horváth and I. Joó, On a minimax
theorem, Annales Univ. Sci. Budapest., Sectio
Math. 37(1994), 119-123.
[34] M. Horváth, Eigenfunction expansions for
one-dimensional Dirac operators, Acta Sci.
Math. Szeged 61(1995),225-240.
[35] M. Horváth, Local uniform convergence of
the Riesz means of Laplace and Dirac ex-
pansions, Annales de la Faculté des Sciences de Toulouse 6(1997), 653-696.
[36] M. Horváth and I. Joó, On some special
pseudoconvex spaces, Acta Math. Hung.
81(1-2)(1998), 13-20.
[37] M. Horváth, Eigenfunction expansion for the
three-dimensional Dirac operator,
J.
Differential Equations 160(2000), 139-174. (ps)
[38] M. Horváth, On a theorem of Ambarzumian, Proc.
Royal Soc. Edinburgh 131A(2001),
899-907. (ps)
[39] M. Horváth, On the inverse spectral theory
of Schrödinger and Dirac operators,
Trans. Amer. Math. Soc. 353(10)(2001), 4155-4171. (ps)
[40] M. Horváth, On the first two eigenvalues of
Sturm-Liouville problems, Proc. Amer.
Math. Soc.
131(2003), 1215-1224 . (ps)
[41] M. Horváth, Inverse spectral problems and closed exponential
systems, Annals of Math.
162(2005),885-918. (ps)
[42] M. Horváth, Inverse scattering with fixed energy and an inverse
eigenvalue problem on the
half-line, Trans. Amer. Math. Soc. 358
(2006),
5161-5177.
(ps)
[43] M. Horváth and M. Kiss, A bound for the ratios of eigenvalues of
Schrödinger operators with
single-well potentials, Proc. Amer. Math. Soc. 134(5)(2006), 1425-1434. (ps)
[44] M. Horváth and M. Kiss, A bound for ratios of eigenvalues of
Schrödinger operators on
the real
line, in: Dynamical Systems and Differential Equations, supplement volume of
Discrete and Continuous Dynamical Systems, 2005, 403-409. (pdf)
[45] M. Horváth and M. Kiss, On the stability of inverse scattering with fixed energy, Inverse Problems,
25(2009), 015011. (pdf)
[46] M. Horváth: Inverse problems for linear differential
operators, DSc Dissertation, Budapest, 2007 (pdf)
[47]
B. Apagyi and M. Horváth (editors): Proceedings of the
International Conference on Inverse Quantum
Scattering Theory, 27-31. August, Siófok, 2007,
Modern Physics Letters B vol 22, No 23, 2008.
[48] M.
Horváth: Notes on the distribution of phase shifts,
Proceedings of the International Conference on Inverse
Quantum
Scattering
Theory, 27-31. August, Siófok, 2007,
Modern Physics Letters B vol 22, No 23,
2163-2175, 2008. (pdf)
[49] B. Apagyi and M.
Horváth: Solution of the inverse scattering problem at
fixed energy for potentials being zero beyond a fixed radius, Proceedings
of the International Conference on
Inverse Quantum Scattering
Theory, 27-31. August, Siofok, 2007, Modern Physics Letters B, vol 22, No 23,
2137-2149., 2008. (pdf)
[50]
B. Apagyi, M. Horváth and T. Pálmai: Simplified solutions
of the
Cox-Thompson inverse scattering method at fixed
energy, J. Phys. A
41(23)(2008), 235305, 2008. (pdf)
[51] M. Horváth and
M. Kiss, Stability of direct and inverse eigenvalue problems for
Schrödinger operators on finite intervals, Internat. Math.
Res. Notices Vol. 2010, No 11, 2022-2063. (pdf)
[52] M. Horváth, Inequalities between the fixed-energy phase shifts, Internat. J. Comp. Sci. and Math.
3(1-2)(2010), 132-141. (pdf)
[53] M. Horváth, Partial identification of the potential from phase shifts, J. Math. Anal. Appl. 380(2)(2011), 726-735.
http://dx.doi.org/10.1016/j.jmaa.2010.10.071 (
pdf)
[54] M. Horváth and M. Kiss,
Stability
of direct and inverse eigenvalue problems: the case of complex potentials, Inverse Problems 27:(9) Paper 095007. 20 p. (2011) (pdf).
[55] M. Horváth, Spectral shift functions in the
fixed energy inverse scattering, Inverse Problems and Imaging
5:(4) pp. 843-858. (2011) (pdf).
[56] M. Horváth, On the stability in Ambarzumian theorems, INVERSE PROBLEMS 31:(2) Paper 025008. 9 p. (2015) (pdf).
[57] M. Horváth and Z. Markó, Discrete inverse problems for the Schrödinger operator on the multi-dimensional square lattice
with partial Cauchy data, Inverse Problems 32: (5) Paper 055006. 12 p. (2016) (pdf).
[58] M. Horváth, The control of vibrating string (in Hungarian), Alkalmazott Matematikai Lapok (to appear).
[59] M. Horváth and O. Sáfár, Inverse eigenvalue problems (submitted).
[60] M. Horváth and Z. Markó, The fundamental gap of a class of discrete Sturm-Liouville operators (in preparation).
[61] M. Horváth and O. Sáfár, Inequalities between fixed-energy phase shifts II (in preparation).