Szemináriumok

Járvány terjedése térben - ahogyan azt Farkas Miklóstól tanultam tanítani

Időpont: 
2019. 04. 11. 10:15
Hely: 
H306
Előadó: 
Kiss Krisztina

Ezzel az előadással Farkas Miklósra emlékezünk. Ismert, hogy az elméleti korrektség mellett mindig hangsúlyozta az alkalmazások fontosságát. Biomatematika  előadásait  kezdetben az alkalmazásokra amúgy is fogékony matematikus-mérnök hallgatóknak tartotta.

Előadásait nem vetítette, nem emlékezetből mondta el, hanem minden alkalommal újra átgondolta mondanivalóját. Mindig kiemelte azt a valós szituációt, amely jellemzésére alkalmas a felírt modell, a bennük szereplő paraméterek jelentésével együtt. A matematikai eredmények, formulák sosem szerepeltek a szemléletes jelentés hangsúlyozása nélkül. Azt szeretném most bemutatni, hogy előadásai miért is voltak olyan népszerűek a hallgatóság körében.

Adaptive Linear Multistep Methods - Designing Automatic Step Size Control for Multistep Methods

Időpont: 
2019. 04. 04. 10:15
Hely: 
H306
Előadó: 
Gustaf Söderlind

In a k-step adaptive linear multistep methods the coefficients depend on the k-1 most recent step size ratios. In a similar way, both the actual and the estimated local error will depend on these step ratios. The classical error model has been the asymptotic model, $r = ch^{p+1}y^{(p+1)}(t)$, based on the constant step size analysis, where all past step sizes simultaneously go to zero. This does not reflect actual computations with multistep methods, where step size control only affects future steps, not the the previous accepted steps. In variable step size implementations, therefore, even in the asymptotic regime, the error model must include the dependence on previous step sizes and step ratios. In this talk we develop dynamic asymptotic models for variable step size computations, and analyze a few new step size controllers accounting for the dynamics in the error model, while keeping the local error near a prescribed tolerance.

Oldalak