Adequate numerical methods for nonlinear parabolic problems in mathematical finance
The prices and hedging strategies in the real financial market models are often described by fully nonlinear versions of the standard Black-Scholes equation. We concentrate on two classes of models: first, nonlinear Black-Scholes equations in which the volatility depends on second space derivatives of the price(=solution) and then on regime-switching models described by systems of semilinear parabolic equations with exponential nonlinearities. The following characteristic properties of these parabolic problems are typical: unbounded domain, boundary degeneration, maximum-minimum principle and nonnegativity preservation. We develop effective discretizations that reproduce these properties.

